Competing off-loading mechanisms of meropenem from an l,d-transpeptidase reduce antibiotic effectiveness.

Trevor A Zandi, Craig A Townsend
Author Information
  1. Trevor A Zandi: T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218. ORCID
  2. Craig A Townsend: Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218 ctownsend@jhu.edu. ORCID

Abstract

The carbapenem family of ��-lactam antibiotics displays a remarkably broad spectrum of bactericidal activity, exemplified by meropenem's phase II clinical trial success in patients with pulmonary tuberculosis, a devastating disease for which ��-lactam drugs historically have been notoriously ineffective. The discovery and validation of l,d-transpeptidases (Ldts) as critical drug targets of bacterial cell-wall biosynthesis, which are only potently inhibited by the carbapenem and penem structural classes, gave an enzymological basis for the effectiveness of the first antitubercular ��-lactams. Decades of study have delineated mechanisms of ��-lactam inhibition of their canonical targets, the penicillin-binding proteins; however, open questions remain regarding the mechanisms of Ldt inhibition that underlie programs in drug design, particularly the optimization of kinetic behavior and potency. We have investigated critical features of mycobacterial Ldt inhibition and demonstrate here that the covalent inhibitor meropenem undergoes both reversible reaction and nonhydrolytic off-loading reactions from the cysteine transpeptidase Ldt through a high-energy thioester adduct. Next-generation carbapenem optimization strategies should minimize adduct loss from unproductive mechanisms of Ldt adducts that reduce effective drug concentration.

Keywords

References

  1. Biochemistry. 2017 Jan 17;56(2):348-351 [PMID: 28029240]
  2. Angew Chem Int Ed Engl. 2018 Jan 26;57(5):1282-1285 [PMID: 29236332]
  3. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9082-6 [PMID: 9689037]
  4. J Pharm Biomed Anal. 2020 Feb 5;179:112973 [PMID: 31732407]
  5. Eur J Biochem. 1974 May 15;44(2):459-68 [PMID: 4209348]
  6. Drug Intell Clin Pharm. 1985 Dec;19(12):895-9 [PMID: 3910385]
  7. Nat Prod Rep. 2016 Feb;33(2):183-202 [PMID: 25642666]
  8. PLoS One. 2013 Jul 04;8(7):e67831 [PMID: 23861815]
  9. Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12519-23 [PMID: 23055266]
  10. Nat Med. 2010 Apr;16(4):466-9 [PMID: 20305661]
  11. Antimicrob Agents Chemother. 2012 Aug;56(8):4189-95 [PMID: 22615283]
  12. Sci Rep. 2019 Sep 20;9(1):13608 [PMID: 31541180]
  13. J Bacteriol. 2008 Jun;190(12):4360-6 [PMID: 18408028]
  14. J Biol Chem. 2015 Oct 16;290(42):25670-85 [PMID: 26304120]
  15. Curr Opin Chem Biol. 2016 Dec;35:97-108 [PMID: 27693891]
  16. J Antibiot (Tokyo). 1975 Sep;28(9):668-75 [PMID: 810468]
  17. N Engl J Med. 2016 Jul 28;375(4):393-4 [PMID: 27433841]
  18. Biochemistry. 1967 Jul;6(7):1948-54 [PMID: 6049437]
  19. Nat Chem Biol. 2018 Jan;14(1):5-7 [PMID: 29155429]
  20. Eur J Biochem. 1974 Dec 16;50(1):203-14 [PMID: 4217697]
  21. Angew Chem Int Ed Engl. 2019 Feb 11;58(7):1990-1994 [PMID: 30569575]
  22. ACS Infect Dis. 2019 Dec 13;5(12):2047-2054 [PMID: 31597040]
  23. FEMS Microbiol Rev. 2008 Mar;32(2):234-58 [PMID: 18266856]
  24. Antimicrob Agents Chemother. 2015 Feb;59(2):1308-19 [PMID: 25421469]
  25. Chem Rev. 1997 Nov 10;97(7):2631-2650 [PMID: 11851475]
  26. Antimicrob Agents Chemother. 2019 Mar 27;63(4): [PMID: 30718252]
  27. Nat Chem Biol. 2020 Jun;16(6):686-694 [PMID: 32203411]
  28. Biochemistry. 1974 Aug 13;13(17):3471-6 [PMID: 4210702]
  29. ACS Infect Dis. 2019 Jul 12;5(7):1169-1176 [PMID: 31056908]
  30. Sci Rep. 2017 Aug 22;7(1):9136 [PMID: 28831100]
  31. Mol Microbiol. 2012 Oct;86(2):367-81 [PMID: 22906310]
  32. Biochem J. 1950 Feb;46(2):157-61 [PMID: 16748652]
  33. Cell Res. 2013 May;23(5):728-31 [PMID: 23588382]
  34. Antimicrob Agents Chemother. 1990 Mar;34(3):484-6 [PMID: 2334163]
  35. Nat Chem Biol. 2017 Jul;13(7):737-744 [PMID: 28504677]
  36. Nat Chem Biol. 2017 Jan;13(1):54-61 [PMID: 27820797]
  37. J Biol Chem. 2005 Nov 18;280(46):38146-52 [PMID: 16144833]
  38. Antimicrob Agents Chemother. 2013 Dec;57(12):5940-5 [PMID: 24041897]
  39. J Antibiot (Tokyo). 2005 Dec;58(12):817-21 [PMID: 16506699]
  40. Nature. 2015 Apr 16;520(7547):383-7 [PMID: 25624104]
  41. Science. 2009 Feb 27;323(5918):1215-8 [PMID: 19251630]
  42. J Biol Chem. 2011 Jul 1;286(26):22777-84 [PMID: 21543331]
  43. Biochemistry. 2003 Jul 1;42(25):7836-47 [PMID: 12820893]

Grants

  1. R01 AI137329/NIAID NIH HHS
  2. T32 GM008403/NIGMS NIH HHS

MeSH Term

Anti-Bacterial Agents
Lactones
Meropenem
Microbial Sensitivity Tests
Peptidyl Transferases

Chemicals

Anti-Bacterial Agents
Lactones
Peptidyl Transferases
Meropenem

Word Cloud

Created with Highcharts 10.0.0drugmechanismsLdtcarbapenem��-lactamlinhibitionmeropenemcriticaltargetseffectivenessoptimizationoff-loadingadductreduced-transpeptidasefamilyantibioticsdisplaysremarkablybroadspectrumbactericidalactivityexemplifiedmeropenem'sphaseIIclinicaltrialsuccesspatientspulmonarytuberculosisdevastatingdiseasedrugshistoricallynotoriouslyineffectivediscoveryvalidationd-transpeptidasesLdtsbacterialcell-wallbiosynthesispotentlyinhibitedpenemstructuralclassesgaveenzymologicalbasisfirstantitubercular��-lactamsDecadesstudydelineatedcanonicalpenicillin-bindingproteinshoweveropenquestionsremainregardingunderlieprogramsdesignparticularlykineticbehaviorpotencyinvestigatedfeaturesmycobacterialdemonstratecovalentinhibitorundergoesreversiblereactionnonhydrolyticreactionscysteinetranspeptidasehigh-energythioesterNext-generationstrategiesminimizelossunproductiveadductseffectiveconcentrationCompetingantibioticbeta-lactambeta-lactonemodeaction

Similar Articles

Cited By