A Bayesian semi-parametric model for thermal proteome profiling.

Siqi Fang, Paul D W Kirk, Marcus Bantscheff, Kathryn S Lilley, Oliver M Crook
Author Information
  1. Siqi Fang: Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
  2. Paul D W Kirk: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
  3. Marcus Bantscheff: Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany. ORCID
  4. Kathryn S Lilley: Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK. ksl23@cam.ac.uk. ORCID
  5. Oliver M Crook: Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK. omc25@cam.ac.uk. ORCID

Abstract

The thermal stability of proteins can be altered when they interact with small molecules, other biomolecules or are subject to post-translation modifications. Thus monitoring the thermal stability of proteins under various cellular perturbations can provide insights into protein function, as well as potentially determine drug targets and off-targets. Thermal proteome profiling is a highly multiplexed mass-spectrommetry method for monitoring the melting behaviour of thousands of proteins in a single experiment. In essence, thermal proteome profiling assumes that proteins denature upon heating and hence become insoluble. Thus, by tracking the relative solubility of proteins at sequentially increasing temperatures, one can report on the thermal stability of a protein. Standard thermodynamics predicts a sigmoidal relationship between temperature and relative solubility and this is the basis of current robust statistical procedures. However, current methods do not model deviations from this behaviour and they do not quantify uncertainty in the melting profiles. To overcome these challenges, we propose the application of Bayesian functional data analysis tools which allow complex temperature-solubility behaviours. Our methods have improved sensitivity over the state-of-the art, identify new drug-protein associations and have less restrictive assumptions than current approaches. Our methods allows for comprehensive analysis of proteins that deviate from the predicted sigmoid behaviour and we uncover potentially biphasic phenomena with a series of published datasets.

References

  1. Science. 2009 Aug 14;325(5942):834-40 [PMID: 19608861]
  2. Nat Methods. 2019 Sep;16(9):894-901 [PMID: 31384043]
  3. J Biol Chem. 2020 Nov 27;295(48):16219-16238 [PMID: 32878984]
  4. Biochem J. 2010 Apr 14;427(3):401-12 [PMID: 20175751]
  5. Cell. 2012 Feb 3;148(3):530-42 [PMID: 22304919]
  6. Nat Biotechnol. 2014 Oct;32(10):1036-44 [PMID: 25218519]
  7. Science. 2019 Jul 26;365(6451):342-347 [PMID: 31296649]
  8. Nat Protoc. 2015 Oct;10(10):1567-93 [PMID: 26379230]
  9. Nucleic Acids Res. 2013 Jan;41(Database issue):D508-16 [PMID: 23203878]
  10. Anal Chem. 2012 Aug 21;84(16):7188-94 [PMID: 22881393]
  11. Ann Appl Stat. 2022 Dec 1;16(4): [PMID: 36507469]
  12. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10): [PMID: 27599530]
  13. Clin Cancer Res. 2015 Nov 1;21(21):4767-73 [PMID: 26362997]
  14. Science. 2018 Mar 9;359(6380):1170-1177 [PMID: 29439025]
  15. Mol Cell Proteomics. 2019 Dec;18(12):2506-2515 [PMID: 31582558]
  16. Nature. 1995 Aug 24;376(6542):709-12 [PMID: 7651522]
  17. Bioinformatics. 2016 Oct 1;32(19):2973-80 [PMID: 27318198]
  18. Nat Protoc. 2017 Jun;12(6):1110-1135 [PMID: 28471460]
  19. Biopolymers. 1994 Aug;34(8):1015-26 [PMID: 8075384]
  20. Mol Biol Cell. 1999 Aug;10(8):2787-802 [PMID: 10436028]
  21. Nat Rev Mol Cell Biol. 2007 Jul;8(7):574-85 [PMID: 17519961]
  22. Nat Biotechnol. 2020 Mar;38(3):303-308 [PMID: 31959954]
  23. Mol Syst Biol. 2020 Mar;16(3):e9232 [PMID: 32133759]
  24. Oncogene. 2019 Sep;38(39):6599-6614 [PMID: 31375747]
  25. Cold Spring Harb Perspect Biol. 2014 Apr 01;6(4):a018713 [PMID: 24691964]
  26. Nat Commun. 2020 Nov 25;11(1):5987 [PMID: 33239640]
  27. J Biopharm Stat. 2014;24(1):110-29 [PMID: 24392981]
  28. Cancer Res. 1992 Jan 15;52(2):470-3 [PMID: 1728418]
  29. BMC Bioinformatics. 2011 Oct 13;12:399 [PMID: 21995452]
  30. Nat Methods. 2020 May;17(5):495-503 [PMID: 32284610]
  31. Nat Biotechnol. 2019 Feb;37(2):169-178 [PMID: 30607034]
  32. Cell. 2018 Mar 22;173(1):260-274.e25 [PMID: 29551266]
  33. Nat Protoc. 2014 Sep;9(9):2100-22 [PMID: 25101824]
  34. J Comput Biol. 2010 Mar;17(3):355-67 [PMID: 20377450]
  35. Nat Commun. 2021 Feb 26;12(1):1296 [PMID: 33637753]
  36. Nat Protoc. 2020 Jun;15(6):1881-1921 [PMID: 32341577]
  37. Bioinformatics. 2009 May 15;25(10):1300-6 [PMID: 19289448]
  38. Nat Methods. 2021 Jul;18(7):757-759 [PMID: 34140700]
  39. Cell. 2018 May 31;173(6):1495-1507.e18 [PMID: 29706546]
  40. Cell. 2018 Jan 11;172(1-2):358-372.e23 [PMID: 29307493]
  41. Proteome Sci. 2017 Jun 24;15:13 [PMID: 28652855]
  42. Nat Methods. 2021 Jul;18(7):760-762 [PMID: 34140699]
  43. Nat Methods. 2015 Nov;12(11):1055-7 [PMID: 26389571]
  44. Cell. 1994 Aug 26;78(4):657-68 [PMID: 8069914]
  45. Science. 2017 May 26;356(6340): [PMID: 28495876]
  46. Nat Rev Genet. 2016 Aug;17(8):487-500 [PMID: 27346641]
  47. Nat Commun. 2019 Jan 18;10(1):331 [PMID: 30659192]
  48. Nat Commun. 2019 Mar 11;10(1):1155 [PMID: 30858367]
  49. Bioinformatics. 2015 Feb 15;31(4):604-5 [PMID: 25399028]
  50. PLoS Comput Biol. 2020 Nov 9;16(11):e1008288 [PMID: 33166281]
  51. Sci Transl Med. 2019 Jan 2;11(473): [PMID: 30602534]
  52. Science. 2013 Jul 5;341(6141):84-7 [PMID: 23828940]
  53. Structure. 2013 Jun 4;21(6):986-96 [PMID: 23665168]
  54. Genome Biol. 2018 May 29;19(1):65 [PMID: 29843817]
  55. Science. 2017 Feb 24;355(6327): [PMID: 28232526]
  56. Nat Biotechnol. 2008 Jan;26(1):127-32 [PMID: 18183025]
  57. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4868-73 [PMID: 10220385]
  58. J Biol Chem. 2003 Oct 31;278(44):42733-6 [PMID: 12963728]
  59. Bioinformatics. 2012 Dec 15;28(24):3290-7 [PMID: 23047558]
  60. Science. 2014 Oct 3;346(6205):1255784 [PMID: 25278616]
  61. Nat Commun. 2010 Oct 05;1:86 [PMID: 20981014]
  62. Nat Methods. 2015 Dec;12(12):1129-31 [PMID: 26524241]
  63. Commun Biol. 2020 Feb 14;3(1):75 [PMID: 32060372]
  64. Cell. 2000 Aug 18;102(4):463-73 [PMID: 10966108]
  65. Biochem Biophys Res Commun. 1996 Aug 5;225(1):92-9 [PMID: 8769099]
  66. Mol Cell. 2000 Feb;5(2):321-30 [PMID: 10882073]
  67. Nat Chem Biol. 2016 Nov;12(11):908-910 [PMID: 27669419]
  68. Nat Chem Biol. 2015 Jun;11(6):432-7 [PMID: 25915199]
  69. Mol Cell Biol. 2004 Mar;24(5):1884-96 [PMID: 14966270]
  70. Nat Protoc. 2017 Nov;12(11):2391-2410 [PMID: 29072706]
  71. J Biol Chem. 2011 Feb 18;286(7):5494-505 [PMID: 21127067]
  72. Nature. 2014 Apr 10;508(7495):215-21 [PMID: 24695224]
  73. Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761 [PMID: 29155950]
  74. Nat Commun. 2017 May 31;8:15615 [PMID: 28561026]
  75. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18507-12 [PMID: 25512544]
  76. Eur J Biochem. 1997 Sep 1;248(2):407-14 [PMID: 9346296]
  77. Mol Syst Biol. 2020 Oct;16(10):e9500 [PMID: 33022891]
  78. Bioinformatics. 2020 Mar 1;36(5):1484-1491 [PMID: 31608923]
  79. J Stat Softw. 2017;76: [PMID: 36568334]
  80. Nature. 2014 Jan 30;505(7485):648-53 [PMID: 24463511]
  81. Mol Syst Biol. 2018 Jul 6;14(7):e8242 [PMID: 29980614]
  82. J Biol Chem. 1999 Mar 12;274(11):7278-85 [PMID: 10066790]
  83. Pharmacol Res. 2000 Oct;42(4):373-81 [PMID: 10987998]
  84. Nature. 2002 May 23;417(6887):455-8 [PMID: 12024216]

Grants

  1. /Wellcome Trust
  2. MC_UU_00002/13/Medical Research Council
  3. /Department of Health

MeSH Term

Bayes Theorem
Protein Stability
Proteome
Solubility
Temperature
Thermodynamics

Chemicals

Proteome

Word Cloud

Created with Highcharts 10.0.0proteinsthermalstabilitycanproteomeprofilingbehaviourcurrentmethodsThusmonitoringproteinpotentiallymeltingrelativesolubilitymodelBayesiananalysisalteredinteractsmallmoleculesbiomoleculessubjectpost-translationmodificationsvariouscellularperturbationsprovideinsightsfunctionwelldeterminedrugtargetsoff-targetsThermalhighlymultiplexedmass-spectrommetrymethodthousandssingleexperimentessenceassumesdenatureuponheatinghencebecomeinsolubletrackingsequentiallyincreasingtemperaturesonereportStandardthermodynamicspredictssigmoidalrelationshiptemperaturebasisrobuststatisticalproceduresHoweverdeviationsquantifyuncertaintyprofilesovercomechallengesproposeapplicationfunctionaldatatoolsallowcomplextemperature-solubilitybehavioursimprovedsensitivitystate-of-theartidentifynewdrug-proteinassociationslessrestrictiveassumptionsapproachesallowscomprehensivedeviatepredictedsigmoiduncoverbiphasicphenomenaseriespublisheddatasetssemi-parametric

Similar Articles

Cited By