Unravelling the fruit microbiome: The key for developing effective biological control strategies for postharvest diseases.

Hongyin Zhang, Nana Adwoa Serwah Boateng, Guillaume Legrand Ngolong Ngea, Yu Shi, Hetong Lin, Qiya Yang, Kaili Wang, Xiaoyun Zhang, Lina Zhao, Samir Droby
Author Information
  1. Hongyin Zhang: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China. ORCID
  2. Nana Adwoa Serwah Boateng: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
  3. Guillaume Legrand Ngolong Ngea: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
  4. Yu Shi: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
  5. Hetong Lin: College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.
  6. Qiya Yang: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
  7. Kaili Wang: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
  8. Xiaoyun Zhang: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
  9. Lina Zhao: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
  10. Samir Droby: Department of Postharvest Science, ARO, the Volcani Center, Rishon LeZion, Israel.

Abstract

Fruit-based diets are recognized for their benefits to human health. The safety of fruit is a global concern for scientists. Fruit microbiome represents the whole microorganisms that are associated with a fruit. These microbes are either found on the surfaces (epiphytes) or in the tissues of the fruit (endophytes). The recent knowledge gained from these microbial communities is considered relevant to the field of biological control in prevention of postharvest fruit pathology. In this study, the importance of the microbiome of certain fruits and how it holds promise for solving the problems inherent in biocontrol and postharvest crop protection are summarized. Research needs on the fruit microbiome are highlighted. Data from DNA sequencing and "meta-omics" technologies very recently applied to the study of microbial communities of fruits in the postharvest context are also discussed. Various fruit parameters, management practices, and environmental conditions are the main determinants of the microbiome. Microbial communities can be classified according to their structure and function in fruit tissues. A critical mechanism of microbial biological control agents is to reshape and interact with the microbiome of the fruit. The ability to control the microbiome of any fruit is a great potential in postharvest management of fruits. Research on the fruit microbiome offers important opportunities to develop postharvest biocontrol strategies and products, as well as the health profile of the fruit.

Keywords

References

  1. Abdelfattah, A., Freilich, S., Bartuv, R., Zhimo, V. Y., Kumar, A., Biasi, A., Salim, S., Feygenberg, O., Burchard, E., Dardick, C., Liu, J., Khan, A., Ellouze, W., Ali, S., Spadaro, D., Torres, R., Teixido, N., Ozkaya, O., Buehlmann, A., … Droby, S. (2021). Global analysis of the apple fruit microbiome: Are all apples the same? Environmental Microbiology. https://doi.org/10.21203/rs.3.rs-142742/v1
  2. Abdelfattah, A., Li Destri Nicosia, M. G., Cacciola, S. O., Droby, S., & Schena, L. (2015). Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0131069
  3. Abdelfattah, A., Malacrinò, A., Wisniewski, M., Cacciola, S. O., & Schena, L. (2018). Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biological Control, 120. https://doi.org/10.1016/j.biocontrol.2017.07.009
  4. Abdelfattah, A., Whitehead, S. R., Macarisin, D., Liu, J., Burchard, E., Freilich, S., Dardick, C., Droby, S., & Wisniewski, M. (2020). Effect of washing, waxing and low-temperature storage on the postharvest microbiome of apple. Microorganisms, 8(6). https://doi.org/10.3390/microorganisms8060944
  5. Abdelfattah, A., Wisniewski, M., Droby, S., & Schena, L. (2016). Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 3. https://doi.org/10.1038/hortres.2016.47
  6. Abdel-Rahim Ismail R., Abo-Elyousr Kamal A.M. (2017). Using of endophytic Saccharomycopsis fibuligera and thyme oil for management of gray mold rot of guava fruits. Biological Control, 110, 124-131. https://doi.org/10.1016/j.biocontrol.2017.04.014
  7. Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S. T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 14(1). https://doi.org/10.1371/journal.pbio.1002352
  8. Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., & Narasimhan, G. (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. In Evolutionary Bioinformatics, 12. https://doi.org/10.4137/EBO.S36436
  9. Aiello, D., Restuccia, C., Stefani, E., Vitale, A., & Cirvilleri, G. (2019). Postharvest biocontrol ability of Pseudomonas synxantha against Monilinia fructicola and Monilinia fructigena on stone fruit. Postharvest Biology and Technology, 149. https://doi.org/10.1016/j.postharvbio.2018.11.020
  10. Allard, S. M., Ottesen, A. R., & Micallef, S. A. (2020). Rain induces temporary shifts in epiphytic bacterial communities of cucumber and tomato fruit. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58671-7
  11. Amiri, A., & Bompeix, G. (2005). Diversity and population dynamics of Penicillium spp. on apples in pre- and postharvest environments: Consequences for decay development. Plant Pathology, 54(1). https://doi.org/10.1111/j.1365-3059.2005.01112.x
  12. Amon, P., & Sanderson, I. (2017). What is the microbiome? Archives of Disease in Childhood: Education and Practice Edition, 102(5). https://doi.org/10.1136/archdischild-2016-311643
  13. Anantharaman, K., Brown, C. T., Hug, L. A., Sharon, I., Castelle, C. J., Probst, A. J., Thomas, B. C., Singh, A., Wilkins, M. J., Karaoz, U., Brodie, E. L., Williams, K. H., Hubbard, S. S., & Banfield, J. F. (2016). Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications, 7. https://doi.org/10.1038/ncomms13219
  14. Angeli, D., Sare, A. R., Jijakli, M. H., Pertot, I., & Massart, S. (2019). Insights gained from metagenomic shotgun sequencing of apple fruit epiphytic microbiota. Postharvest Biology and Technology, 153. https://doi.org/10.1016/j.postharvbio.2019.03.020
  15. Azevedo, J. L., Araújo, W. L., & Lacava, P. T. (2016). The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants. In Genetics and Molecular Biology, 39(4), https://doi.org/10.1590/1678-4685-GMB-2016-0056
  16. Bailly, A., & Weisskopf, L. (2017). Mining the volatilomes of plant-associated microbiota for new biocontrol solutions. In Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01638
  17. Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis Roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134(1). https://doi.org/10.1104/pp.103.028712
  18. Balali, G. I., Yar, D. D., Afua Dela, V. G., & Adjei-Kusi, P. (2020). Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today's world. International Journal of Microbiology, 2020, 3029295. https://doi.org/10.1155/2020/3029295
  19. Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. In FEMS Microbiology Ecology, 68(1). https://doi.org/10.1111/j.1574-6941.2009.00654.x
  20. Berg, G., Köberl, M., Rybakova, D., Müller, H., Grosch, R., & Smalla, K. (2017). Plant microbial diversity is suggested as the key to future biocontrol and health trends. In FEMS Microbiology Ecology, 93(5). https://doi.org/10.1093/femsec/fix050
  21. Berg, G., Krause, R., & Mendes, R. (2015). Cross-kingdom similarities in microbiome ecology and biocontrol of pathogens. In Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01311
  22. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., … Schloter, M. (2020). Microbiome definition re-visited: Old concepts and new challenges. In Microbiome, 8(1). https://doi.org/10.1186/s40168-020-00875-0
  23. Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P., & Perotto, S. (2001). Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Molecular Plant-Microbe Interactions, 14(2). https://doi.org/10.1094/MPMI.2001.14.2.255
  24. Boon, E., Meehan, C. J., Whidden, C., Wong, D. H. J., Langille, M. G. I., & Beiko, R. G. (2014). Interactions in the microbiome: Communities of organisms and communities of genes. In FEMS Microbiology Reviews, 38(1). https://doi.org/10.1111/1574-6976.12035
  25. Bösch, Y., Britt, E., Perren, S., Naef, A., Frey, J. E., & Bühlmann, A. (2021). Dynamics of the apple fruit microbiome after harvest and implications for fruit quality. Microorganisms, 9(2). https://doi.org/10.3390/microorganisms9020272
  26. Bright, M., & Bulgheresi, S. (2010). A complex journey: Transmission of microbial symbionts. In Nature Reviews Microbiology, 8(3). https://doi.org/10.1038/nrmicro2262
  27. Busby, P. E., Ridout, M., & Newcombe, G. (2016). Fungal endophytes: Modifiers of plant disease. Plant Molecular Biology, 90(6). https://doi.org/10.1007/s11103-015-0412-0
  28. Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., Morsy, M., Eisen, J. A., Leach, J. E., & Dangl, J. L. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 15(3). https://doi.org/10.1371/journal.pbio.2001793
  29. Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. In Agronomy, 9(3). https://doi.org/10.3390/agronomy9030121
  30. Chen, C., Cao, Z., Li, J., Tao, C., Feng, Y., & Han, Y. (2020). A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biological Control, 148. https://doi.org/10.1016/j.biocontrol.2020.104306
  31. Compant Stéphane, Mitter Birgit, Colli-Mull Juan Gualberto, Gangl Helmut, Sessitsch Angela (2011). Endophytes of Grapevine Flowers, Berries, and Seeds: Identification of Cultivable Bacteria, Comparison with Other Plant Parts, and Visualization of Niches of Colonization. Microbial Ecology, 62, (1), 188-197. https://doi.org/10.1007/s00248-011-9883-y
  32. Cruz André Freire, Barka Geleta Dugassa, Blum Luiz Eduardo Bassay, Tanaka Tetsushi, Ono Naoaki, Kanaya Shigehiko, Reineke Annette (2019). Evaluation of microbial communities in peels of Brazilian tropical fruits by amplicon sequence analysis. Brazilian Journal of Microbiology, 50, (3), 739-748. https://doi.org/10.1007/s42770-019-00088-0
  33. Cruz, A. F., Barka, G. D., Sylla, J., & Reineke, A. (2018). Biocontrol of strawberry fruit infected by Botrytis cinerea: Effects on the microbial communities on fruit assessed by next-generation sequencing. Journal of Phytopathology, 166(6). https://doi.org/10.1111/jph.12700
  34. de Melo Pereira Gilberto Vinícius, Magalhães Karina Teixeira, Lorenzetii Emi Rainildes, Souza Thiago Pereira, Schwan Rosane Freitas (2012). A Multiphasic Approach for the Identification of Endophytic Bacterial in Strawberry Fruit and their Potential for Plant Growth Promotion. Microbial Ecology, 63, (2), 405-417. https://doi.org/10.1007/s00248-011-9919-3
  35. De Silva, N. I., Brooks, S., Lumyong, S., & Hyde, K. D. (2019). Use of endophytes as biocontrol agents. In Fungal Biology Reviews, 33(2). https://doi.org/10.1016/j.fbr.2018.10.001
  36. Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., Berdugo, M., Campbell, C. D., & Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7. https://doi.org/10.1038/ncomms10541
  37. Díaz Herrera, S., Grossi, C., Zawoznik, M., & Groppa, M. D. (2016). Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiological Research, 186-187. https://doi.org/10.1016/j.micres.2016.03.002
  38. Diskin, S., Feygenberg, O., Maurer, D., Droby, S., Prusky, D., & Alkan, N. (2017). Microbiome alterations are correlated with occurrence of postharvest stem-end rot in mango fruit. Phytobiomes Journal, 1(3). https://doi.org/10.1094/PBIOMES-05-17-0022-R
  39. Doty, S. L., Sher, A. W., Fleck, N. D., Khorasani, M., Bumgarner, R. E., Khan, Z., Ko, A. W. K., Kim, S. H., & DeLuca, T. H. (2016). Variable nitrogen fixation in wild Populus. PLoS ONE, 11(5). https://doi.org/10.1371/journal.pone.0155979
  40. Droby, S., & Wisniewski, M. (2018). The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biology and Technology, 140. https://doi.org/10.1016/j.postharvbio.2018.03.004
  41. Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? In Postharvest Biology and Technology, 52(2). https://doi.org/10.1016/j.postharvbio.2008.11.009
  42. Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122. https://doi.org/10.1016/j.postharvbio.2016.04.006
  43. Dutot, M., Nelson, L. M., & Tyson, R. C. (2013). Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biology and Technology, 85. https://doi.org/10.1016/j.postharvbio.2013.04.003
  44. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., Sundaresan, V., & Jeffery, L. D. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8). https://doi.org/10.1073/pnas.1414592112
  45. Elbeltagy, A., Nishioka, K., Sato, T., Suzuki, H., Ye, B., Hamada, T., Isawa, T., Mitsui, H., & Minamisawa, K. (2001). Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied and Environmental Microbiology, 67(3-12). https://doi.org/10.1128/aem.67.11.5285-5293.2001
  46. Ellis, J. G. (2017). Can plant microbiome studies lead to effective biocontrol of plant diseases? In Molecular Plant-Microbe Interactions, 30(3). https://doi.org/10.1094/MPMI-12-16-0252-CR
  47. Eng, A., & Borenstein, E. (2019). Microbial community design: Methods, applications, and opportunities. In Current Opinion in Biotechnology, 58. https://doi.org/10.1016/j.copbio.2019.03.002
  48. Fang, X., Li, Y., Guo, W., Ke, W., Bi, S., Guo, X., & Zhang, Y. (2019). Lactobacillus delbrueckii subsp. bulgaricus F17 and Leuconostoc lactis H52 supernatants delay the decay of strawberry fruits: A microbiome perspective. Food and Function, 10(12). https://doi.org/10.1039/c9fo02079a
  49. Faust, K. (2019). Towards a better understanding of microbial community dynamics through high-throughput cultivation and data integration. MSystems, 4(3). https://doi.org/10.1128/msystems.00101-19
  50. Frank, A., Saldierna Guzmán, J., & Shay, J. (2017). Transmission of bacterial endophytes. Microorganisms, 5(4). https://doi.org/10.3390/microorganisms5040070
  51. Fresno, D. H., & Munné-Bosch, S. (2021). Differential tissue-specific jasmonic acid, salicylic acid, and abscisic acid dynamics in sweet cherry development and their implications in fruit-microbe interactions. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.640601
  52. Glassner Hanoch, Zchori-Fein Einat, Compant Stéphane, Sessitsch Angela, Katzir Nurit, Portnoy Vitaly, Yaron Sima (2015). Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis meloL.). FEMS Microbiology Ecology, 91. https://doi.org/10.1093/femsec/fiv074
  53. Goggin, D. E., Emery, R. J. N., Kurepin, L. V., & Powles, S. B. (2015). A potential role for endogenous microflora in dormancy release, cytokinin metabolism and the response to fluridone in Lolium rigidum seeds. Annals of Botany, 115(2). https://doi.org/10.1093/aob/mcu231
  54. Habiba, N. R., Ali, S. A., Hasan, K. A., Sultana, V., Ara, J., & Ehteshamul-Haque, S. (2019). Evaluation of biocontrol potential of epiphytic yeast against postharvest Penicillium digitatum rot of stored Kinnow fruit (Citrus reticulata) and their effect on its physiochemical properties. Postharvest Biology and Technology, 148. https://doi.org/10.1016/j.postharvbio.2018.10.007
  55. Hadrich, D. (2018). Microbiome research is becoming the key to better understanding health and nutrition. In Frontiers in Genetics, 9. https://doi.org/10.3389/fgene.2018.00212
  56. Haggag, W. M., & Timmusk, S. (2008). Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology, 104(4). https://doi.org/10.1111/j.1365-2672.2007.03611.x
  57. Hall Megan E., Wilcox Wayne F. (2019). Identification and Frequencies of Endophytic Microbes within Healthy Grape Berries. American Journal of Enology and Viticulture, 70, (2), 212-219. https://doi.org/10.5344/ajev.2018.18033
  58. Hanin N A, Fitriasari P D (2019). Identification of Endophytic Fungi from Fruits and Seeds of Jambolana (Syzygium cuminiL.) Skeels. IOP Conference Series: Earth and Environmental Science, 276, 012060. https://doi.org/10.1088/1755-1315/276/1/012060
  59. Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3). https://doi.org/10.1128/mmbr.00050-14
  60. Hipol, Roland M., Magtoto, Liezel M., Tamang, Sigrid Minette A., & Damatac II, Amor M. (2014). Antioxidant Activities of Fungal Endophytes Isolated from Strawberry Fragaria x ananassa Fruit. Electronic Journal of Biology, 10(4).
  61. Hirt, H. (2020). Healthy soils for healthy plants for healthy humans: How beneficial microbes in the soil, food and gut are interconnected and how agriculture can contribute to human health. EMBO Reports, 21(8). https://doi.org/10.15252/embr.202051069
  62. Ho, A., Di Lonardo, D. P., & Bodelier, P. L. E. (2017). Revisiting life strategy concepts in environmental microbial ecology. In FEMS Microbiology Ecology, 93(3). https://doi.org/10.1093/femsec/fix006
  63. Hooks, K. B., & O'Malley, M. A. (2017). Dysbiosis and its discontents. MBio, 8(5). https://doi.org/10.1128/mBio.01492-17
  64. Huang, X., Ren, J., Li, P., Feng, S., Dong, P., & Ren, M. (2020). Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. In Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.10829
  65. Istifadaha, N., Ningtyasb, D. N. Y., Suryatmana, P., & Fitriatin, B. N. (2017). The abilities of endophytic and biofertilizing bacteria and their combinations to suppress bacterial wilt disease (Ralstonia solanacearum) of Chili. KnE Life Sciences, 2(6). https://doi.org/10.18502/kls.v2i6.1052
  66. Janisiewicz, W. J., Jurick, W. M., Vico, I., Peter, K. A., & Buyer, J. S. (2013). Culturable bacteria from plum fruit surfaces and their potential for controlling brown rot after harvest. Postharvest Biology and Technology, 76. https://doi.org/10.1016/j.postharvbio.2012.10.004
  67. Jideani, A. I. O., Silungwe, H., Takalani, T., Omolola, A. O., Udeh, H. O., & Anyasi, T. A. (2021). Antioxidant-rich natural fruit and vegetable products and human health. In International Journal of Food Properties, 24(1). https://doi.org/10.1080/10942912.2020.1866597
  68. Jones, S. (2013). Trends in microbiome research. In Nature Biotechnology, 31(4). https://doi.org/10.1038/nbt.2546
  69. Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., & Trevors, J. T. (2004). Methods of studying soil microbial diversity. In Journal of Microbiological Methods, 58(2). https://doi.org/10.1016/j.mimet.2004.04.006
  70. Krishnan P., Bhat R., Kush A., Ravikumar P. (2012). Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. Journal of Applied Microbiology, 113, (2), 308-317. https://doi.org/10.1111/j.1365-2672.2012.05340.x
  71. Kumar, A., Zhimo, Y., Biasi, A., Salim, S., Feygenberg, O., Wisniewski, M., & Droby, S. (2021). Endophytic microbiome in the carposphere and its importance in fruit physiology and pathology. In D. Spadaro, S. Droby, & M. L. Gullino (Eds.), Postharvest pathology (Vol. 11, pp. 73-88). Springer. https://doi.org/10.1007/978-3-030-56530-5_5
  72. Kumpoun, W., Motomura, Y., & Harada, Y. (2003). Inhibition of Aspergillus rot by sorbitol in apple fruit with watercore symptoms. Postharvest Biology and Technology, 29(2). https://doi.org/10.1016/S0925-5214(02)00249-1
  73. Kusstatscher, P., Cernava, T., Abdelfattah, A., Gokul, J., Korsten, L., & Berg, G. (2020). Microbiome approaches provide the key to biologically control postharvest pathogens and storability of fruits and vegetables. FEMS Microbiology Ecology, 96(7). https://doi.org/10.1093/femsec/fiaa119
  74. Kusstatscher, P., Cernava, T., Harms, K., Maier, J., Eigner, H., Berg, G., & Zachow, C. (2019). Disease incidence in sugar beet fields is correlated with microbial diversity and distinct biological markers. Phytobiomes Journal, 3(1). https://doi.org/10.1094/PBIOMES-01-19-0008-R
  75. Lai, K., Chen, S., Hu, M., Hu, Q., Geng, P., Weng, Q., & Jia, J. (2012). Control of postharvest green mold of citrus fruit by application of endophytic Paenibacillus polymyxa strain SG-6. Postharvest Biology and Technology, 69. https://doi.org/10.1016/j.postharvbio.2012.03.001
  76. Lemanceau, P., Blouin, M., Muller, D., & Moënne-Loccoz, Y. (2017). Let the core microbiota be functional. In Trends in Plant Science, 22(7). https://doi.org/10.1016/j.tplants.2017.04.008
  77. Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., & Tadmor, Y. (2005). Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. Journal of Agricultural and Food Chemistry, 53(8). https://doi.org/10.1021/jf047927t
  78. Li, C., Zhang, H., Yang, Q., Komla, M. G., Zhang, X., & Zhu, S. (2014). Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples. Journal of Agricultural and Food Chemistry, 62(30). https://doi.org/10.1021/jf501984n
  79. Li, X., Zhu, X., Zhao, N., Fu, D., Li, J., Chen, W., & Chen, W. (2013). Effects of hot water treatment on anthracnose disease in papaya fruit and its possible mechanism. Postharvest Biology and Technology, 86. https://doi.org/10.1016/j.postharvbio.2013.07.037
  80. Liu, J., Abdelfattah, A., Norelli, J., Burchard, E., Schena, L., Droby, S., & Wisniewski, M. (2018). Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome, 6(1). https://doi.org/10.1186/s40168-018-0403-x
  81. Liu, X., Gao, Y., Yang, H., Li, L., Jiang, Y., Li, Y., & Zheng, J. (2020). Pichia kudriavzevii retards fungal decay by influencing the fungal community succession during cherry tomato fruit storage. Food Microbiology, 88. https://doi.org/10.1016/j.fm.2019.103404
  82. Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M., & Van der Lelie, D. (2002). Endophytic bacteria and their potential applications. In Critical Reviews in Plant Sciences, 21(6). https://doi.org/10.1080/0735-260291044377
  83. Loo, Y. T., Howell, K., Chan, M., Zhang, P., & Ng, K. (2020). Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Comprehensive Reviews in Food Science and Food Safety, 19(4). https://doi.org/10.1111/1541-4337.12563
  84. López-González, R. C., Juárez-Campusano, Y. S., Rodríguez-Chávez, J. L., Delgado-Lamas, G., Medrano, S. M. A., Martínez-Peniche, R. Á., & Pacheco-Aguilar, J. R. (2021). Antagonistic activity of bacteria isolated from apple in different fruit development stages against blue mold caused by penicillium expansum. Plant Pathology Journal, 37(1). https://doi.org/10.5423/PPJ.OA.07.2020.0121
  85. Lukša, J., Vepštaitė-Monstavičė, I., Apšegaitė, V., Blažytė-čereškienė, L., Stanevičienė, R., Strazdaitė-žielienė, Ž., Ravoitytė, B., Aleknavičius, D., Būda, V., Mozūraitis, R., & Servienė, E. (2020). Fungal microbiota of Sea Buckthorn berries at two ripening stages and volatile profiling of potential biocontrol yeasts. Microorganisms, 8(3). https://doi.org/10.3390/microorganisms8030456
  86. Lv, P., Li, N., Liu, H., Gu, H., & Zhao, W. E. (2015). Changes in carotenoid profiles and in the expression pattern of the genes in carotenoid metabolisms during fruit development and ripening in four watermelon cultivars. Food Chemistry, 174. https://doi.org/10.1016/j.foodchem.2014.11.022
  87. Madbouly, A. K., Elyousr, A. K. A. M., & Ismail, I. M. (2020). Biocontrol of Monilinia fructigena, causal agent of brown rot of apple fruit, by using endophytic yeasts. Biological Control, 144. https://doi.org/10.1016/j.biocontrol.2020.104239
  88. Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? In Nutrients, 12(5). https://doi.org/10.3390/nu12051474
  89. Mamphogoro, T. P., Maboko, M. M., Babalola, O. O., & Aiyegoro, O. A. (2020). Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-65587-9
  90. Mari, M., Di Francesco, A., & Bertolini, P. (2014). Control of fruit postharvest diseases: Old issues and innovative approaches. Stewart Postharvest Review, 10(1). https://doi.org/10.2212/spr.2014.1.1
  91. Massart, S., Perazzolli, M., Höfte, M., Pertot, I., & Jijakli, M. H. (2015). Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. In BioControl, 60(6). https://doi.org/10.1007/s10526-015-9686-z
  92. Mazzola, M., & Freilich, S. (2017). Prospects for biological soilborne disease control: Application of indigenous versus synthetic microbiomes. Phytopathology, 107(3). https://doi.org/10.1094/PHYTO-09-16-0330-RVW
  93. Medina-Romero, Y. M., Roque-Flores, G., & Macías-Rubalcava, M. L. (2017). Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits. Applied Microbiology and Biotechnology, 101(22). https://doi.org/10.1007/s00253-017-8542-8
  94. Mendes, R., & Raaijmakers, J. M. (2015). Cross-kingdom similarities in microbiome functions. In ISME Journal, 9(9). https://doi.org/10.1038/ismej.2015.7
  95. Mezzasalma, V., Sandionigi, A., Bruni, I., Bruno, A., Lovicu, G., Casiraghi, M., & Labra, M. (2017). Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. PLoS ONE, 12(9). https://doi.org/10.1371/journal.pone.0184615
  96. Miguel, P. S. B., Delvaux, J. C., de Oliveira, M. N. V., Monteiro, L. C. P., de Souza Freitas, F., Costa, M. D., Totola, M. R., de Moraes, C. A., & Borges, A. C. (2013). Diversity of endophytic bacteria in the fruits of Coffea canephora. African Journal of Microbiology Research, 7(7), 586-594. https://doi.org/10.5897/AJMR12.2036
  97. Moyes, A. B., Kueppers, L. M., Pett-Ridge, J., Carper, D. L., Vandehey, N., O'Neil, J., & Frank, A. C. (2016). Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist, 210(2). https://doi.org/10.1111/nph.13850
  98. Mukhopadhyay, K., Garrison, N. K., Hinton, D. M., Bacon, C. W., Khush, G. S., Peck, H. D., & Datta, N. (1996). Identification and characterization of bacterial endophytes of rice. Mycopathologia, 134(3). https://doi.org/10.1007/BF00436723
  99. Naylor, D., Degraaf, S., Purdom, E., & Coleman-Derr, D. (2017). Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME Journal, 11(12). https://doi.org/10.1038/ismej.2017.118
  100. Newman, G. (2021). Fruit and vegetables: Prevention and cure? In E. Short (Ed.), A prescription for healthy living (pp. 243-253). Academic Press. https://doi.org/10.1016/B978-0-12-821573-9.00022-9
  101. Ngolong Ngea, G. L., Qian, X., Yang, Q., Dhanasekaran, S., Ianiri, G., Ballester, A. R., Zhang, X., Castoria, R., & Zhang, H. (2021). Securing fruit production: Opportunities from the elucidation of the molecular mechanisms of postharvest fungal infections. Comprehensive Reviews in Food Science and Food Safety. https://doi.org/10.1111/1541-4337.12729
  102. Ngolong Ngea, G. L., Yang, Q., Tchabo, W., Castoria, R., Zhang, X., & Zhang, H. (2021). Leuconostoc mesenteroides subsp. mesenteroides LB7 isolated from apple surface inhibits P. expansum in vitro and reduces patulin in fruit juices. International Journal of Food Microbiology, 339. https://doi.org/10.1016/j.ijfoodmicro.2020.109025
  103. Nishida, C., Uauy, R., Kumanyika, S., & Shetty, P. (2004). The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: Process, product and policy implications. Public Health Nutrition, 7(1a). https://doi.org/10.1079/phn2003592
  104. Ofaim, S., Ofek-Lalzar, M., Sela, N., Jinag, J., Kashi, Y., Minz, D., & Freilich, S. (2017). Analysis of microbial functions in the rhizosphere using a metabolic-network based framework for metagenomics interpretation. Frontiers in Microbiology, 8(AUG). https://doi.org/10.3389/fmicb.2017.01606
  105. Ofek-Lalzar, M., Sela, N., Goldman-Voronov, M., Green, S. J., Hadar, Y., & Minz, D. (2014). Niche and host-associated functional signatures of the root surface microbiome. Nature Communications, 5. https://doi.org/10.1038/ncomms5950
  106. Oliveira Marcelo N.V., Santos Thiago M.A., Vale Helson M.M., Delvaux Júlio C., Cordero Alexander P., Ferreira Alessandra B., Miguel Paulo S.B., Tótola Marcos R., Costa Maurício D., Moraes Célia A., Borges Arnaldo C. (2013). Endophytic microbial diversity in coffee cherries ofCoffea arabicafrom southeastern Brazil. Canadian Journal of Microbiology, 59, (4), 221-230. https://doi.org/10.1139/cjm-2012-0674
  107. Orozco-Mosqueda, M. d. C., Rocha-Granados, M. d. C., Glick, B. R., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. In Microbiological Research, 208. https://doi.org/10.1016/j.micres.2018.01.005
  108. Papoutsis, K., Mathioudakis, M. M., Hasperué, J. H., & Ziogas, V. (2019). Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). In Trends in Food Science and Technology. https://doi.org/10.1016/j.tifs.2019.02.053
  109. Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology, 47. https://doi.org/10.1016/j.fm.2014.11.013
  110. Peterson, J. R., Thor, S. S., Kohler, L., Kohler, P. R. A., Metcalf, W. W., & Luthey-Schulten, Z. (2016). Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-3219-8
  111. Ponomarova, O., & Patil, K. R. (2015). Metabolic interactions in microbial communities: Untangling the Gordian knot. In Current Opinion in Microbiology, 27. https://doi.org/10.1016/j.mib.2015.06.014
  112. Preto, G., Martins, F., Pereira, J. A., & Baptista, P. (2017). Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and selection of isolates to be used as biocontrol agents. Biological Control, 110. https://doi.org/10.1016/j.biocontrol.2017.03.011
  113. Puente, M. E., Li, C. Y., & Bashan, Y. (2009). Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environmental and Experimental Botany, 66(3). https://doi.org/10.1016/j.envexpbot.2009.04.007
  114. Ridder, H. G., Miles, M. B., Michael Huberman, A., & Saldaña, J. (2014). Qualitative data analysis. A methods sourcebook. Zeitschrift Fur Personalforschung, 28(4). https://doi.org/10.1177/239700221402800402
  115. Rout, M. E., Chrzanowski, T. H., Westlie, T. K., DeLuca, T. H., Callaway, R. M., & Holben, W. E. (2013). Bacterial endophytes enhance competition by invasive plants. American Journal of Botany, 100(9). https://doi.org/10.3732/ajb.1200577
  116. Saminathan, T., García, M., Ghimire, B., Lopez, C., Bodunrin, A., Nimmakayala, P., Abburi, V. L., Levi, A., Balagurusamy, N., & Reddy, U. K. (2018). Metagenomic and metatranscriptomic analyses of diverse watermelon cultivars reveal the role of fruit associated microbiome in carbohydrate metabolism and ripening of mature fruits. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00004
  117. Sauer, K., & Camper, A. K. (2001). Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. Journal of Bacteriology, 183(22). https://doi.org/10.1128/JB.183.22.6579-6589.2001
  118. Schena Leonardo, Nigro Franco, Pentimone Isabella, Ligorio Angela, Ippolito Antonio (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology and Technology, 30, (3), 209-220. https://doi.org/10.1016/s0925-5214(03)00111-x
  119. Shameer, S., & Prasad, T. N. V. K. V. (2018). Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation, 84(3). https://doi.org/10.1007/s10725-017-0365-1
  120. Shen, Y., Nie, J., Dong, Y., Kuang, L., Li, Y., & Zhang, J. (2018). Compositional shifts in the surface fungal communities of apple fruits during cold storage. Postharvest Biology and Technology, 144. https://doi.org/10.1016/j.postharvbio.2018.05.005
  121. Shi, J., Liu, A., Li, X., Feng, S., & Chen, W. (2010). Identification of endophytic bacterial strain MGP1 selected from papaya and its biocontrol effects on pathogens infecting harvested papaya fruit. Journal of the Science of Food and Agriculture, 90(2). https://doi.org/10.1002/jsfa.3798
  122. Shimizu, M., Yazawa, S., & Ushijima, Y. (2009). A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. Journal of General Plant Pathology, 75(1). https://doi.org/10.1007/s10327-008-0138-9
  123. Singh, D., & Sharma, R. R. (2018). Postharvest diseases of fruits and vegetables and their management. In Postharvest Disinfection of Fruits and Vegetables. https://doi.org/10.1016/b978-0-12-812698-1.00001-7
  124. Singh, D., Raina, T. K., Kumar, A., Singh, J., & Prasad, R. (2019). Plant microbiome: A reservoir of novel genes and metabolites. Plant Gene, 18. https://doi.org/10.1016/j.plgene.2019.100177
  125. Soliman, S., Li, X. Z., Shao, S., Behar, M., Svircev, A. M., Tsao, R., & Zhou, T. (2015). Potential mycotoxin contamination risks of apple products associated with fungal flora of apple core. Food Control, 47. https://doi.org/10.1016/j.foodcont.2014.07.060
  126. Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. In Trends in Food Science and Technology (Vol., 47, pp. 39-49). https://doi.org/10.1016/j.tifs.2015.11.003
  127. Spadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91(2). https://doi.org/10.1016/S0168-1605(03)00380-5
  128. Sritharan Thulasi, Savitri Kumar N., Jayasinghe Lalith, Araya Hiroshi, Fujimoto Yoshinori (2019). Isocoumarins and Dihydroisocoumarins From the Endophytic Fungus Biscogniauxia capnodes Isolated From the Fruits of Averrhoa carambola. Natural Product Communications, 14, (5), 1934578X1985196. https://doi.org/10.1177/1934578x19851969
  129. Stegen, J. C., Bottos, E. M., & Jansson, J. K. (2018). A unified conceptual framework for prediction and control of microbiomes. In Current Opinion in Microbiology, 44. https://doi.org/10.1016/j.mib.2018.06.002
  130. Stojanov, S., Berlec, A., & Štrukelj, B. (2020). The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. In Microorganisms, 8(11). https://doi.org/10.3390/microorganisms8111715
  131. Suhandono, S., Kusumawardhani, M. K., & Aditiawati, P. (2016). Isolation and molecular identification of endophytic bacteria from rambutan fruits (Nephelium lappaceum L.) cultivar Binjai. HAYATI Journal of Biosciences, 23(1). https://doi.org/10.1016/j.hjb.2016.01.005
  132. Taha, M. D. M., Jaini, M. F. M., Saidi, N. B., Rahim, R. A., Shah, U. K. M., & Hashim, A. M. (2019). Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLoS ONE, 14(12). https://doi.org/10.1371/journal.pone.0224431
  133. Usall, J., Torres, R., & Teixidó, N. (2016). Biological control of postharvest diseases on fruit: A suitable alternative? In Current Opinion in Food Science, 11. https://doi.org/10.1016/j.cofs.2016.09.002
  134. van der Merwe, M. (2020). Gut microbiome changes induced by a diet rich in fruits and vegetables. International Journal of Food Sciences and Nutrition. https://doi.org/10.1080/09637486.2020.1852537
  135. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. In New Phytologist, 206(4). https://doi.org/10.1111/nph.13312
  136. Vannier, N., Agler, M., & Hacquard, S. (2019). Microbiota-mediated disease resistance in plants. PLoS Pathogens, 15(6). https://doi.org/10.1371/journal.ppat.1007740
  137. Wang, M., Zhao, L., Zhang, X., Dhanasekaran, S., Abdelhai, M. H., Yang, Q., Jiang, Z., & Zhang, H. (2019). Study on biocontrol of postharvest decay of table grapes caused by Penicillium rubens and the possible resistance mechanisms by Yarrowia lipolytica. Biological Control, 130. https://doi.org/10.1016/j.biocontrol.2018.11.004
  138. Wassermann, B., Kusstatscher, P., & Berg, G. (2019). Microbiome response to hot water treatment and potential synergy with biological control on stored apples. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02502
  139. Wassermann, B., Müller, H., & Berg, G. (2019). An apple a day: Which bacteria do we eat with organic and conventional apples? Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01629
  140. Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., Cordero, O. X., Brown, S. P., Momeni, B., Shou, W., Kettle, H., Flint, H. J., Haas, A. F., Laroche, B., Kreft, J. U., Rainey, P. B., Freilich, S., Schuster, S., Milferstedt, K., … Wilmes, P. (2016). Challenges in microbial ecology: Building predictive understanding of community function and dynamics. In ISME Journal, 10(11). https://doi.org/10.1038/ismej.2016.45
  141. Wilson, C. L. (1985). Potential for biological control of postharvest plant diseases. Plant Disease, 69(5). https://doi.org/10.1094/pd-69-375
  142. Wisniewski, M., & Droby, S. (2019). The postharvest microbiome: The other half of sustainability. In Biological Control, 137. https://doi.org/10.1016/j.biocontrol.2019.104025
  143. Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122. https://doi.org/10.1016/j.postharvbio.2016.05.012
  144. Wu, W., Lei, J., Hussain, M., Cao, S., Du, B., & Wang, R. (2019). Structure and function of the fruit microbiome in healthy and diseased kiwifruit. Pakistan Journal of Agricultural Sciences, 56(3), 577-585. https://doi.org/10.21162/PAKJAS/19.8820
  145. Xu, J., Zhang, Y., Zhang, P., Trivedi, P., Riera, N., Wang, Y., Liu, X., Fan, G., Tang, J., Coletta-Filho, H. D., Cubero, J., Deng, X., Ancona, V., Lu, Z., Zhong, B., Roper, M. C., Capote, N., Catara, V., Pietersen, G., … Wang, N. (2018). The structure and function of the global citrus rhizosphere microbiome. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-07343-2
  146. Xu, X., Zarecki, R., Medina, S., Ofaim, S., Liu, X., Chen, C., Hu, S., Brom, D., Gat, D., Porob, S., Eizenberg, H., Ronen, Z., Jiang, J., & Freilich, S. (2019). Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME Journal, 13(2). https://doi.org/10.1038/s41396-018-0288-5
  147. Yahia, E. M., Fonseca, J. M., & Kitinoja, L. (2019). Postharvest losses and waste. In E. M. Yahia (Ed.), Postharvest technology of perishable horticultural commodities (pp. 43-69). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813276-0.00002-X
  148. Yang, Q., Wang, H., Zhang, H., Zhang, X., Apaliya, M. T., Zheng, X., & Mahunu, G. K. (2017). Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus. Postharvest Biology and Technology. https://doi.org/10.1016/j.postharvbio.2016.11.015
  149. Yurgel, S. N., Abbey, L., Loomer, N., Gillis-Madden, R., & Mammoliti, M. (2018). Microbial communities associated with storage onion. Phytobiomes Journal, 2(1). https://doi.org/10.1094/PBIOMES-12-17-0052-R
  150. Zhang, H., Mahunu, G. K., Castoria, R., Apaliya, M. T., & Yang, Q. (2017). Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. In Trends in Food Science and Technology. https://doi.org/10.1016/j.tifs.2017.08.020
  151. Zhang, H., Godana, E. A., Sui, Y., Yang, Q., Zhang, X., & Zhao, L. (2020). Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: A review. In Critical Reviews in Microbiology, 46(4). https://doi.org/10.1080/1040841X.2020.1794793
  152. Zheng, H., Mao, Y., Teng, J., Zhu, Q., Ling, J., & Zhong, Z. (2015). Flagellar-dependent motility in Mesorhizobium tianshanense is involved in the early stage of plant host interaction: Study of an flgE mutant. Current Microbiology, 70(2). https://doi.org/10.1007/s00284-014-0701-x
  153. Zhimo, V. Y., Kumar, A., Biasi, A., Salim, S., Feygenberg, O., Toamy, M. A., Abdelfattaah, A., Medina, S., Freilich, S., Wisniewski, M., & Droby, S. (2021). Compositional shifts in the strawberry fruit microbiome in response to near-harvest application of Metschnikowia fructicola, a yeast biocontrol agent. Postharvest Biology and Technology, 175. https://doi.org/10.1016/j.postharvbio.2021.111469
  154. Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. In FEMS Microbiology Reviews, 32(5). https://doi.org/10.1111/j.1574-6976.2008.00123.x

Grants

  1. 31772369/National Natural Science Foundation of China
  2. 31901743/National Natural Science Foundation of China
  3. 32072276/National Natural Science Foundation of China

MeSH Term

Biological Control Agents
Endophytes
Fruit
Humans
Microbiota

Chemicals

Biological Control Agents

Word Cloud

Created with Highcharts 10.0.0fruitmicrobiomepostharvestcontrolbiologicalmicrobialcommunitiesfruitshealthtissuesendophytesstudybiocontrolResearchmanagementstrategiesdiseasesFruit-baseddietsrecognizedbenefitshumansafetyglobalconcernscientistsFruitrepresentswholemicroorganismsassociatedmicrobeseitherfoundsurfacesepiphytesrecentknowledgegainedconsideredrelevantfieldpreventionpathologyimportancecertainholdspromisesolvingproblemsinherentcropprotectionsummarizedneedshighlightedDataDNAsequencing"meta-omics"technologiesrecentlyappliedcontextalsodiscussedVariousparameterspracticesenvironmentalconditionsmaindeterminantsMicrobialcanclassifiedaccordingstructurefunctioncriticalmechanismagentsreshapeinteractabilitygreatpotentialoffersimportantopportunitiesdevelopproductswellprofileUnravellingmicrobiome:keydevelopingeffectivemeta-omics

Similar Articles

Cited By