Enhancement of Nano-Biopolymer Antibacterial Activity by Pulsed Electric Fields.

Mai I El-Kaliuoby, Motaz Amer, Nader Shehata
Author Information
  1. Mai I El-Kaliuoby: Faculty of Education, Alexandria University, Alexandria 21544, Egypt.
  2. Motaz Amer: Basic and Applied Science Institute, College of Engineering Arab Academy for Science, Technology and Maritime Transports, Alexandria 21544, Egypt.
  3. Nader Shehata: The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

Abstract

Chronic wounds are commonly colonized with bacteria in a way that prevents full healing process and capacity for repair. Nano-chitosan, a biodegradable and nontoxic biopolymer, has shown bacteriostatic activity against a wide spectrum of bacteria. Effectively, pulsed electromagnetic fields are shown to have both wound healing enhancement and antibacterial activity. This work aimed to combine the use of nano-chitosan and exposure to a pulsed electric field to overcome two common types of infectious bacteria, namely and . Here, bacteria growing rate, growth kinetics and cell cytotoxicity (levels of lactate dehydrogenase, protein leakage and nucleic acid leakage) were investigated. Our findings confirmed the maximum antibacterial synergistic combination of nano-chitosan and exposure against than using each one alone. It is presumed that the exposure has influenced bacteria membrane charge distribution in a manner that allowed more chitosan to anchor the surface and enter inside the cell. Significantly, cell cytotoxicity substantiates high enzymatic levels as a result of cell membrane disintegration. In conclusion, exposure to pulsed electromagnetic fields has a synergistic antibacterial effect against and with maximum inhibitory effect for the last one. Extensive work should be done to evaluate the combination against different bacteria types to get general conclusive results. The ability of using pulsed electromagnetic fields as a wound healing accelerator and antibacterial cofactor has been proved, but in vivo experimental work in the future to verify the use of such a new combination against infectious wounds and to determine optimum treatment conditions is a must.

Keywords

References

  1. Int J Food Microbiol. 2010 Nov 15;144(1):51-63 [PMID: 20951455]
  2. J Proteome Res. 2010 Mar 5;9(3):1579-90 [PMID: 20108986]
  3. Int J Microbiol. 2012;2012:587293 [PMID: 22577384]
  4. J Mater Sci Mater Med. 2017 Jan;28(1):21 [PMID: 28012155]
  5. Toxicol Lett. 2014 Mar 21;225(3):422-32 [PMID: 24463055]
  6. J Nanobiotechnology. 2014 Feb 03;12:5 [PMID: 24491160]
  7. Case Rep Dermatol Med. 2015;2015:576580 [PMID: 26634159]
  8. Mutat Res. 2011 May 18;722(1):56-61 [PMID: 21497670]
  9. Clin Microbiol Rev. 2006 Apr;19(2):403-34 [PMID: 16614255]
  10. Sci Rep. 2015 May 12;5:10187 [PMID: 25965851]
  11. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  12. Mayo Clin Proc. 2014 Oct;89(10):1436-51 [PMID: 24974260]
  13. Appl Environ Microbiol. 2008 Jun;74(12):3764-73 [PMID: 18456858]
  14. Cell. 2015 Jul 30;162(3):540-51 [PMID: 26232224]
  15. Appl Microbiol Biotechnol. 2010 Jan;85(4):1115-22 [PMID: 19669753]
  16. Antibiotics (Basel). 2020 Aug 28;9(9): [PMID: 32872146]
  17. Pharm Biol. 2014 Nov;52(11):1388-97 [PMID: 25026353]
  18. Analyst. 2016 Mar 21;141(6):1922-9 [PMID: 26811849]
  19. Bioelectromagnetics. 2008 May;29(4):302-11 [PMID: 18175330]
  20. Carbohydr Res. 2004 Nov 15;339(16):2693-700 [PMID: 15519328]
  21. Technology (Singap World Sci). 2013 Sep;1(1):1-8 [PMID: 24999487]
  22. Polymers (Basel). 2021 Jan 15;13(2): [PMID: 33467752]
  23. Biomolecules. 2019 Jul 19;9(7): [PMID: 31331095]
  24. Bioelectrochemistry. 2004 Jun;63(1-2):337-41 [PMID: 15110299]
  25. Int J Food Microbiol. 2002 Mar 25;74(1-2):65-72 [PMID: 11929171]
  26. Eur J Med Res. 2014 Jul 05;19:37 [PMID: 24996421]
  27. Acta Pharmacol Sin. 2004 Jul;25(7):932-6 [PMID: 15210068]
  28. Carbohydr Res. 2001 Jun 22;333(1):1-6 [PMID: 11423105]
  29. Water Sci Technol. 2014;70(5):763-70 [PMID: 25225921]
  30. J Basic Microbiol. 2014 Aug;54(8):858-65 [PMID: 23703736]
  31. Bioelectromagnetics. 2010 May;31(4):318-23 [PMID: 20082338]
  32. Sci Technol Adv Mater. 2017 Jul 20;18(1):528-540 [PMID: 28804527]
  33. Wound Repair Regen. 2008 Jan-Feb;16(1):2-10 [PMID: 18211573]
  34. Infect Immun. 2007 Aug;75(8):3715-21 [PMID: 17562773]
  35. Int J Radiat Biol. 2011 Dec;87(12):1155-61 [PMID: 21401315]

Word Cloud

Created with Highcharts 10.0.0bacteriapulsedantibacterialhealingfieldsexposurecellelectromagneticwoundworknano-chitosancombinationwoundsshownactivityuseelectrictypesinfectiouscytotoxicitylevelsleakagemaximumsynergisticusingonemembraneeffectChroniccommonlycolonizedwaypreventsfullprocesscapacityrepairNano-chitosanbiodegradablenontoxicbiopolymerbacteriostaticwidespectrumEffectivelyenhancementaimedcombinefieldovercometwocommonnamelygrowingrategrowthkineticslactatedehydrogenaseproteinnucleicacidinvestigatedfindingsconfirmedalonepresumedinfluencedchargedistributionmannerallowedchitosananchorsurfaceenterinsideSignificantlysubstantiateshighenzymaticresultdisintegrationconclusioninhibitorylastExtensivedoneevaluatedifferentgetgeneralconclusiveresultsabilityacceleratorcofactorprovedvivoexperimentalfutureverifynewdetermineoptimumtreatmentconditionsmustEnhancementNano-BiopolymerAntibacterialActivityPulsedElectricFieldsPaeruginosaSaureusnaturalbiopolymers

Similar Articles

Cited By