The Role of Neuropilin-1 (NRP-1) in SARS-CoV-2 Infection: Review.

Monika Gudowska-Sawczuk, Barbara Mroczko
Author Information
  1. Monika Gudowska-Sawczuk: Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland. ORCID
  2. Barbara Mroczko: Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland. ORCID

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), discovered in 2019, is responsible for the global coronavirus disease 19 (COVID-19) pandemic. The main protein that interacts with the host cell receptor is the Spike-1 (S1) subunit of the coronavirus. This subunit binds with receptors present on the host cell membrane. It has been identified from several studies that neuropilin-1 (NRP-1) is one of the co-receptors for SARS-CoV-2 entry. Therefore, in this review, we focus on the significance of NRP-1 in SARS-CoV-2 infection. MEDLINE/PubMed database was used for a search of available literature. In the current review, we report that NRP-1 plays many important functions, including angiogenesis, neuronal development, and the regulation of immune responses. Additionally, the presence of this glycoprotein on the host cell membrane significantly augments the infection and spread of SARS-CoV-2. Literature data suggest that NRP-1 facilitates entry of the virus into the central nervous system through the olfactory epithelium of the nasal cavity. Moreover, published findings show that interfering with VEGF-A/NRP-1 using NRP-1 inhibitors may produce an analgesic effect. The review describes an association between NRP-1, SARS-CoV-2 and, inter alia, pathological changes in the retina. Based on the published findings, we suggest that NRP-1 is a very important mediator implicated in, inter alia, neurological manifestations of SARS-CoV-2 infection. Additionally, it appears that the use of NRP-1 inhibitors is a promising therapeutic strategy for the treatment of SARS-CoV-2 infection.

Keywords

References

  1. Lancet. 2020 May 23;395(10237):1610 [PMID: 32405105]
  2. Front Microbiol. 2021 Mar 17;12:614494 [PMID: 33815307]
  3. Viruses. 2012 Jun;4(6):1011-33 [PMID: 22816037]
  4. Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165878 [PMID: 32544429]
  5. Pediatr Infect Dis J. 2005 Nov;24(11 Suppl):S223-7, discussion S226 [PMID: 16378050]
  6. J Pathol. 2004 Jun;203(2):631-7 [PMID: 15141377]
  7. Saudi J Biol Sci. 2021 Jul;28(7):3926-3928 [PMID: 33850424]
  8. Sci Transl Med. 2015 Apr 1;7(281):281ra43 [PMID: 25834109]
  9. Metabol Open. 2021 Mar;9:100079 [PMID: 33521617]
  10. Int J Exp Pathol. 2012 Apr;93(2):81-103 [PMID: 22414290]
  11. Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64 [PMID: 16339739]
  12. PLoS Pathog. 2020 Jul 29;16(7):e1008737 [PMID: 32726355]
  13. Science. 2020 Nov 13;370(6518):856-860 [PMID: 33082293]
  14. Biophys J. 2021 Jul 20;120(14):2828-2837 [PMID: 34087218]
  15. Arch Biochem Biophys. 2021 Sep 15;708:108951 [PMID: 34102165]
  16. Science. 2020 Nov 13;370(6518):861-865 [PMID: 33082294]
  17. Mol Immunol. 2017 Oct;90:239-244 [PMID: 28843905]
  18. Immun Ageing. 2020 May 27;17:14 [PMID: 32501397]
  19. Pain. 2021 Jan;162(1):243-252 [PMID: 33009246]
  20. Mol Med Rep. 2020 Nov;22(5):4221-4226 [PMID: 33000221]
  21. Sci Adv. 2020 Nov 25;6(48): [PMID: 33239293]
  22. Front Cell Infect Microbiol. 2020 Nov 25;10:587269 [PMID: 33324574]
  23. Microorganisms. 2020 Sep 24;8(10): [PMID: 32987852]
  24. Eur J Immunol. 2004 Mar;34(3):623-630 [PMID: 14991591]
  25. Hum Cell. 2021 Jul;34(4):1280-1281 [PMID: 33847870]
  26. Neurol Res Pract. 2020 Dec 2;2:51 [PMID: 33283160]
  27. Cells. 2020 May 20;9(5): [PMID: 32443810]
  28. Cell. 2018 Aug 23;174(5):1158-1171.e19 [PMID: 30057110]
  29. Arch Dis Child Fetal Neonatal Ed. 2022 Jan;107(1):95-97 [PMID: 33990387]
  30. Cancers (Basel). 2020 Nov 30;12(12): [PMID: 33266104]
  31. Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20109-20116 [PMID: 32747526]
  32. Science. 2020 Nov 13;370(6518):765-766 [PMID: 33184193]
  33. J Autoimmun. 2020 May;109:102434 [PMID: 32143990]
  34. ACS Chem Neurosci. 2021 Apr 21;12(8):1299-1312 [PMID: 33787218]
  35. Infect Genet Evol. 2020 Nov;85:104502 [PMID: 32798769]
  36. Med Hypotheses. 2021 Jan;146:110406 [PMID: 33246692]
  37. Noncoding RNA. 2021 Feb 02;7(1): [PMID: 33540664]
  38. J Biol Chem. 2012 Mar 30;287(14):11082-9 [PMID: 22318724]
  39. Signal Transduct Target Ther. 2021 Jan 18;6(1):21 [PMID: 33462185]
  40. PLoS One. 2020 Dec 31;15(12):e0244126 [PMID: 33382764]
  41. Int J Mol Med. 2021 Apr;47(4): [PMID: 33649798]
  42. Bioorg Med Chem. 2021 Mar 1;33:116040 [PMID: 33515918]
  43. iScience. 2019 Jan 25;11:205-223 [PMID: 30623799]
  44. JAMA Neurol. 2020 Jun 1;77(6):683-690 [PMID: 32275288]
  45. Cell. 2020 May 14;181(4):894-904.e9 [PMID: 32275855]
  46. PLoS One. 2012;7(11):e49177 [PMID: 23145112]

Word Cloud

Created with Highcharts 10.0.0NRP-1SARS-CoV-2coronavirushostcellinfectionreviewCOVID-19subunitmembraneentryimportantAdditionallysuggestpublishedfindingsinhibitorsinteraliaSevereacuterespiratorysyndrome2discovered2019responsibleglobaldisease19pandemicmainproteininteractsreceptorSpike-1S1bindsreceptorspresentidentifiedseveralstudiesneuropilin-1oneco-receptorsThereforefocussignificanceMEDLINE/PubMeddatabaseusedsearchavailableliteraturecurrentreportplaysmanyfunctionsincludingangiogenesisneuronaldevelopmentregulationimmuneresponsespresenceglycoproteinsignificantlyaugmentsspreadLiteraturedatafacilitatesviruscentralnervoussystemolfactoryepitheliumnasalcavityMoreovershowinterferingVEGF-A/NRP-1usingmayproduceanalgesiceffectdescribesassociationpathologicalchangesretinaBasedmediatorimplicatedneurologicalmanifestationsappearsusepromisingtherapeuticstrategytreatmentRoleNeuropilin-1Infection:Review

Similar Articles

Cited By