Selenium Nanomaterials to Combat Antimicrobial Resistance.

Linh B Truong, David Medina-Cruz, Ebrahim Mostafavi, Navid Rabiee
Author Information
  1. Linh B Truong: Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
  2. David Medina-Cruz: Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
  3. Ebrahim Mostafavi: Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. ORCID
  4. Navid Rabiee: Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran. ORCID

Abstract

The rise of antimicrobial resistance to antibiotics (AMR) as a healthcare crisis has led to a tremendous social and economic impact, whose damage poses a significant threat to future generations. Current treatments either are less effective or result in further acquired resistance. At the same time, several new antimicrobial discovery approaches are expensive, slow, and relatively poorly equipped for translation into the clinical world. Therefore, the use of nanomaterials is presented as a suitable solution. In particular, this review discusses selenium nanoparticles (SeNPs) as one of the most promising therapeutic agents based in the nanoscale to treat infections effectively. This work summarizes the latest advances in the synthesis of SeNPs and their progress as antimicrobial agents using traditional and biogenic approaches. While physiochemical methods produce consistent nanostructures, along with shortened processing procedures and potential for functionalization of designs, green or biogenic synthesis represents a quick, inexpensive, efficient, and eco-friendly approach with more promise for tunability and versatility. In the end, the clinical translation of SeNPs faces various obstacles, including uncertain in vivo safety profiles and mechanisms of action and unclear regulatory frameworks. Nonetheless, the promise possessed by these metalloid nanostructures, along with other nanoparticles in treating bacterial infections and slowing down the AMR crisis, are worth exploring.

Keywords

References

  1. Adv Appl Microbiol. 2010;70:217-48 [PMID: 20359459]
  2. Chem Commun (Camb). 2003 Apr 21;(8):927-34 [PMID: 12744306]
  3. Microb Biotechnol. 2017 Jul;10(4):804-818 [PMID: 28233476]
  4. Water Res. 2020 Feb 1;169:115229 [PMID: 31783256]
  5. ACS Omega. 2020 Feb 05;5(6):2660-2669 [PMID: 32095689]
  6. J Trace Elem Med Biol. 2017 Jan;39:135-139 [PMID: 27908405]
  7. Appl Microbiol Biotechnol. 2016 Mar;100(6):2555-66 [PMID: 26801915]
  8. Biosci Biotechnol Biochem. 2006 May;70(5):1060-75 [PMID: 16717405]
  9. Int J Mol Sci. 2018 Nov 29;19(12): [PMID: 30501097]
  10. Biomed Pharmacother. 2019 Mar;111:802-812 [PMID: 30616079]
  11. Arch Microbiol. 2021 Mar;203(2):523-532 [PMID: 32968818]
  12. Sci Rep. 2020 Feb 18;10(1):2854 [PMID: 32071320]
  13. Can J Infect Dis Med Microbiol. 2005 May;16(3):159-60 [PMID: 18159536]
  14. Nanoscale. 2020 Jan 28;12(4):2268-2291 [PMID: 31942896]
  15. Life Sci. 2014 Oct 12;115(1-2):44-51 [PMID: 25219884]
  16. Am J Transl Res. 2019 Jul 15;11(7):3919-3931 [PMID: 31396309]
  17. Front Microbiol. 2015 Jun 16;6:584 [PMID: 26136728]
  18. Expert Opin Drug Deliv. 2021 Jun;18(6):715-736 [PMID: 33332168]
  19. Acta Biomater. 2018 Jun;73:38-51 [PMID: 29653217]
  20. Nanoscale. 2019 Aug 8;11(31):14937-14951 [PMID: 31363721]
  21. Clin Microbiol Rev. 2019 Jan 16;32(2): [PMID: 30651225]
  22. ACS Nano. 2020 Oct 27;14(10):12341-12369 [PMID: 33034443]
  23. Front Microbiol. 2016 Nov 16;7:1831 [PMID: 27899918]
  24. Microb Pathog. 2018 Sep;122:108-116 [PMID: 29894810]
  25. Nanomaterials (Basel). 2020 Feb 09;10(2): [PMID: 32050443]
  26. Int J Nanomedicine. 2019 Jul 01;14:4613-4624 [PMID: 31308651]
  27. World J Gastrointest Pharmacol Ther. 2017 Aug 6;8(3):162-173 [PMID: 28828194]
  28. Sci Rep. 2020 Jan 16;10(1):510 [PMID: 31949299]
  29. Nanomaterials (Basel). 2020 Oct 05;10(10): [PMID: 33027935]
  30. Drug Resist Updat. 2016 May;26:43-57 [PMID: 27180309]
  31. Biol Trace Elem Res. 2020 May;195(1):323-342 [PMID: 31396853]
  32. Pharm Biol. 2013 Jan;51(1):58-63 [PMID: 23035822]
  33. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3463-E3470 [PMID: 29581252]
  34. Res Pharm Sci. 2014 Nov-Dec;9(6):385-406 [PMID: 26339255]
  35. Food Chem Toxicol. 2020 Oct;144:111621 [PMID: 32738372]
  36. Int J Nanomedicine. 2020 May 19;15:3577-3595 [PMID: 32547015]
  37. Acta Biomater. 2016 Jan;30:397-407 [PMID: 26518106]
  38. Bioprocess Biosyst Eng. 2015 Sep;38(9):1723-30 [PMID: 25972036]
  39. J Trace Elem Med Biol. 2015 Jan;29:235-41 [PMID: 25175509]
  40. Int J Mol Sci. 2015 Oct 16;16(10):24656-72 [PMID: 26501270]
  41. Biomater Sci. 2019 Nov 19;7(12):5112-5123 [PMID: 31573569]
  42. Int Microbiol. 2021 Jan;24(1):103-114 [PMID: 33124680]
  43. Int J Nanomedicine. 2017 Sep 13;12:6841-6855 [PMID: 28979122]
  44. Carbohydr Polym. 2018 Mar 15;184:9-19 [PMID: 29352947]
  45. Nanomedicine. 2016 Apr;12(3):789-799 [PMID: 26724539]
  46. Int J Mol Sci. 2018 Dec 18;19(12): [PMID: 30567324]
  47. Infect Immun. 2002 Sep;70(9):5287-9 [PMID: 12183584]
  48. Nat Nanotechnol. 2018 Jan;13(1):65-71 [PMID: 29203912]
  49. J Biomed Mater Res A. 2018 May;106(5):1400-1412 [PMID: 29356322]
  50. Curr Top Med Chem. 2018;18(1):22-41 [PMID: 29412108]
  51. ACS Appl Mater Interfaces. 2020 Dec 16;12(50):55696-55709 [PMID: 33249831]
  52. Microb Biotechnol. 2016 Nov;9(6):758-771 [PMID: 27319803]
  53. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  54. J Trace Elem Med Biol. 2021 Jul;66:126758 [PMID: 33857859]
  55. Expert Opin Drug Deliv. 2020 Mar;17(3):341-356 [PMID: 32064959]
  56. ACS Nano. 2019 Dec 24;13(12):13965-13984 [PMID: 31730327]
  57. Mayo Clin Proc. 2019 Jun;94(6):1040-1047 [PMID: 30922694]
  58. Nanomedicine. 2010 Apr;6(2):257-62 [PMID: 19616126]

Grants

  1. T32 EB009035/NIBIB NIH HHS

MeSH Term

Animals
Anti-Bacterial Agents
Anti-Infective Agents
Drug Resistance, Bacterial
Humans
Metal Nanoparticles
Nanostructures
Selenium

Chemicals

Anti-Bacterial Agents
Anti-Infective Agents
Selenium

Word Cloud

Created with Highcharts 10.0.0antimicrobialnanoparticlesSeNPsresistanceAMRcrisisapproachestranslationclinicalnanomaterialsseleniumagentsinfectionssynthesisbiogenicnanostructuresalonggreenpromiseriseantibioticshealthcareledtremendoussocialeconomicimpactwhosedamageposessignificantthreatfuturegenerationsCurrenttreatmentseitherlesseffectiveresultacquiredtimeseveralnewdiscoveryexpensiveslowrelativelypoorlyequippedworldThereforeusepresentedsuitablesolutionparticularreviewdiscussesonepromisingtherapeuticbasednanoscaletreateffectivelyworksummarizeslatestadvancesprogressusingtraditionalphysiochemicalmethodsproduceconsistentshortenedprocessingprocedurespotentialfunctionalizationdesignsrepresentsquickinexpensiveefficienteco-friendlyapproachtunabilityversatilityendfacesvariousobstaclesincludinguncertainvivosafetyprofilesmechanismsactionunclearregulatoryframeworksNonethelesspossessedmetalloidtreatingbacterialslowingworthexploringSeleniumNanomaterialsCombatAntimicrobialResistancenanotechnologyNPsSeNMs

Similar Articles

Cited By (20)