Coupling between Sequence-Mediated Nucleosome Organization and Genome Evolution.

Jérémy Barbier, Cédric Vaillant, Jean-Nicolas Volff, Frédéric G Brunet, Benjamin Audit
Author Information
  1. Jérémy Barbier: Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France. ORCID
  2. Cédric Vaillant: Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France. ORCID
  3. Jean-Nicolas Volff: Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France. ORCID
  4. Frédéric G Brunet: Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France. ORCID
  5. Benjamin Audit: Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France. ORCID

Abstract

The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence has an influence on the position of nucleosomes on genomes, although other factors are also implicated, such as ATP-dependent remodelers or competition of the nucleosome with DNA binding proteins. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.

Keywords

References

  1. J Cell Biol. 1990 Sep;111(3):795-806 [PMID: 2391364]
  2. J Mol Biol. 2006 Aug 11;361(2):216-30 [PMID: 16859709]
  3. BMC Bioinformatics. 2009 Dec 22;10:442 [PMID: 20028554]
  4. Phys Rev Lett. 2007 Nov 23;99(21):218103 [PMID: 18233262]
  5. PLoS One. 2016 Jun 07;11(6):e0156905 [PMID: 27272176]
  6. Biochemistry. 1975 Jul;14(13):2921-5 [PMID: 1148185]
  7. Nature. 2006 Oct 5;443(7111):521-4 [PMID: 17024082]
  8. Nat Genet. 2009 Apr;41(4):438-45 [PMID: 19252487]
  9. Brief Bioinform. 2016 Sep;17(5):745-57 [PMID: 26411474]
  10. Prog Nucleic Acid Res Mol Biol. 1999;62:227-55 [PMID: 9932456]
  11. Photochem Photobiol. 2017 Jan;93(1):216-228 [PMID: 27716995]
  12. Mol Cell Biol. 2000 Dec;20(24):9173-81 [PMID: 11094069]
  13. Oncotarget. 2016 Feb 9;7(6):6460-75 [PMID: 26771136]
  14. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11507-11512 [PMID: 27688757]
  15. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3816-20 [PMID: 6933438]
  16. J Mol Biol. 1985 Dec 20;186(4):773-90 [PMID: 3912515]
  17. Nucleic Acids Res. 1994 Dec 25;22(25):5635-9 [PMID: 7838716]
  18. Biophys J. 2018 May 22;114(10):2308-2316 [PMID: 29580552]
  19. Nat Struct Mol Biol. 2010 Feb;17(2):251-7 [PMID: 20118936]
  20. ISRN Mol Biol. 2012 Oct 15;2012:245706 [PMID: 27335664]
  21. Genome Res. 2014 Feb;24(2):251-9 [PMID: 24310001]
  22. Nat Commun. 2016 May 02;7:11383 [PMID: 27136393]
  23. Genome Biol. 2018 Nov 19;19(1):199 [PMID: 30454069]
  24. Nature. 2010 Oct 28;467(7319):1061-73 [PMID: 20981092]
  25. Nat Genet. 2012 May 27;44(7):743-50 [PMID: 22634752]
  26. Nat Struct Mol Biol. 2013 Mar;20(3):267-73 [PMID: 23463311]
  27. PLoS Genet. 2018 Nov 28;14(11):e1007823 [PMID: 30485262]
  28. Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6752-6757 [PMID: 28607059]
  29. J Biol Chem. 2013 May 10;288(19):13863-75 [PMID: 23543741]
  30. Genes Dev. 2014 Feb 15;28(4):396-408 [PMID: 24532716]
  31. Nature. 2007 Mar 29;446(7135):572-6 [PMID: 17392789]
  32. Phys Rev Lett. 2009 Oct 30;103(18):188103 [PMID: 19905836]
  33. J Mol Biol. 1986 Oct 20;191(4):659-75 [PMID: 3806678]
  34. PLoS Biol. 2010 Jul 06;8(7):e1000414 [PMID: 20625544]
  35. Genes Dev. 2011 May 15;25(10):1010-22 [PMID: 21576262]
  36. J Mol Biol. 2004 May 7;338(4):695-709 [PMID: 15099738]
  37. J Mol Biol. 1988 Nov 5;204(1):109-27 [PMID: 3063825]
  38. Genome Res. 2017 Oct;27(10):1674-1684 [PMID: 28912372]
  39. Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):10988-93 [PMID: 23784778]
  40. Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22257-62 [PMID: 20018700]
  41. J Biol Chem. 1962 Aug;237:2620-5 [PMID: 13918300]
  42. Biophys J. 2017 Feb 7;112(3):505-511 [PMID: 28131316]
  43. BMC Genomics. 2010 May 17;11:309 [PMID: 20478020]
  44. Cell Rep. 2014 Nov 6;9(3):996-1006 [PMID: 25437555]
  45. J Mol Biol. 1997 Apr 11;267(4):807-17 [PMID: 9135113]
  46. Mol Cell Biol. 1994 Sep;14(9):5777-85 [PMID: 8065312]
  47. J Mol Biol. 2021 Mar 19;433(6):166847 [PMID: 33539878]
  48. Sci Adv. 2015 Jul 03;1(6):e1500021 [PMID: 26601207]
  49. Plant Physiol. 2015 Aug;168(4):1406-16 [PMID: 26143253]
  50. Nucleic Acids Res. 1979 Apr;6(4):1387-415 [PMID: 450700]
  51. Mol Plant. 2017 Jul 5;10(7):962-974 [PMID: 28487258]
  52. Mol Biol Evol. 2016 Dec;33(12):3284-3298 [PMID: 27624717]
  53. Nat Genet. 2007 Oct;39(10):1235-44 [PMID: 17873876]
  54. Nature. 2020 Feb;578(7793):82-93 [PMID: 32025007]
  55. Trends Cell Biol. 2012 May;22(5):250-6 [PMID: 22421062]
  56. Nucleic Acids Res. 1979;6(5):1805-16 [PMID: 450714]
  57. Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1412-7 [PMID: 16432200]
  58. Genome Res. 2014 Mar;24(3):454-66 [PMID: 24299735]
  59. Biophys Chem. 2011 May;155(2-3):53-64 [PMID: 21482020]
  60. Science. 2005 Jul 22;309(5734):626-30 [PMID: 15961632]
  61. Nucleic Acids Res. 2014 Jan;42(1):128-36 [PMID: 24068556]
  62. Chromosome Res. 2001;9(4):309-23 [PMID: 11419795]
  63. Mol Cell Biol. 1999 Oct;19(10):6963-71 [PMID: 10490633]
  64. Mob DNA. 2021 Jan 6;12(1):1 [PMID: 33407840]
  65. Nature. 2020 Feb;578(7793):94-101 [PMID: 32025018]
  66. Plant Mol Biol. 1998 Jan;36(1):149-61 [PMID: 9484470]
  67. Genome Res. 2011 Nov;21(11):1777-87 [PMID: 21903742]
  68. Nat Struct Mol Biol. 2012 Nov;19(11):1185-92 [PMID: 23085715]
  69. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9057-62 [PMID: 27457959]
  70. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2124-33 [PMID: 27036006]
  71. Curr Opin Cell Biol. 2007 Jun;19(3):250-6 [PMID: 17466507]
  72. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2393-7 [PMID: 7892278]
  73. Nature. 1977 Sep 1;269(5623):29-36 [PMID: 895884]
  74. Genome Biol. 2010;11(11):140 [PMID: 21118582]
  75. Clin Cancer Res. 2017 Jun 1;23(11):2617-2629 [PMID: 28572256]
  76. Genome Res. 2007 Apr;17(4):422-32 [PMID: 17339369]
  77. J Biomol Struct Dyn. 1983 Oct;1(2):429-35 [PMID: 6400882]
  78. Cell. 2019 Mar 21;177(1):101-114 [PMID: 30901533]
  79. Nat Commun. 2020 Mar 13;11(1):1363 [PMID: 32170069]
  80. Arch Microbiol. 2000 Mar;173(3):165-9 [PMID: 10763747]
  81. Mol Gen Genet. 1995 Jun 10;247(5):633-8 [PMID: 7603443]
  82. Genome Biol. 2011 Dec 28;12(12):236 [PMID: 22204421]
  83. Cell. 1993 May 21;73(4):775-87 [PMID: 8500170]
  84. Cell. 2008 Mar 7;132(5):887-98 [PMID: 18329373]
  85. Nucleic Acids Res. 1980 Sep 11;8(17):4041-53 [PMID: 7443521]
  86. PLoS Genet. 2014 Jul 03;10(7):e1004457 [PMID: 24991813]
  87. Methods Mol Biol. 2018;1675:167-181 [PMID: 29052192]
  88. Science. 2011 May 20;332(6032):977-80 [PMID: 21596991]
  89. Cell Res. 2011 Mar;21(3):421-34 [PMID: 21263457]
  90. PLoS Comput Biol. 2013;9(11):e1003373 [PMID: 24278010]
  91. Genome Biol. 2019 Sep 13;20(1):198 [PMID: 31519205]
  92. J Mol Biol. 1998 Feb 13;276(1):19-42 [PMID: 9514715]
  93. Mob DNA. 2019 Nov 3;10:42 [PMID: 31700550]
  94. J Phys Condens Matter. 2015 Feb 18;27(6):064102 [PMID: 25563930]
  95. Cell. 2018 Nov 1;175(4):1074-1087.e18 [PMID: 30388444]
  96. PLoS Biol. 2008 Mar 18;6(3):e65 [PMID: 18351804]
  97. PLoS Comput Biol. 2008 Nov;4(11):e1000216 [PMID: 18989395]
  98. Genome Res. 2017 Jan;27(1):75-86 [PMID: 27979995]
  99. Nucleus. 2017 Nov 2;8(6):605-612 [PMID: 29202635]
  100. Nature. 2011 May 22;474(7352):516-20 [PMID: 21602827]
  101. Nat Rev Genet. 2015 Apr;16(4):213-23 [PMID: 25732611]
  102. Nature. 2016 Apr 14;532(7598):264-7 [PMID: 27075101]
  103. Cell Mol Life Sci. 2008 Nov;65(22):3553-63 [PMID: 18636225]
  104. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  105. PLoS Genet. 2012;8(11):e1003036 [PMID: 23166509]
  106. DNA Repair (Amst). 2019 Sep;81:102645 [PMID: 31307926]
  107. J Mol Biol. 2021 Mar 19;433(6):166678 [PMID: 33065110]
  108. Trends Genet. 2009 Aug;25(8):335-43 [PMID: 19596482]
  109. Nature. 2015 Feb 19;518(7539):360-364 [PMID: 25693567]
  110. Cell. 2009 Jul 10;138(1):114-28 [PMID: 19596239]
  111. Chem Rev. 2015 Mar 25;115(6):2255-73 [PMID: 25495456]
  112. Nature. 2008 May 15;453(7193):358-62 [PMID: 18408708]
  113. Nat Commun. 2016 May 06;7:11485 [PMID: 27151365]
  114. Genome Res. 2010 Jan;20(1):59-67 [PMID: 19858362]
  115. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6644-8 [PMID: 3477794]
  116. Cell. 1999 Aug 6;98(3):285-94 [PMID: 10458604]
  117. Nature. 2012 Jun 28;486(7404):496-501 [PMID: 22722846]
  118. BMC Genomics. 2016 Jul 29;17:526 [PMID: 27472913]
  119. Nat Rev Genet. 2007 Dec;8(12):973-82 [PMID: 17984973]
  120. Science. 2012 Mar 9;335(6073):1235-8 [PMID: 22403392]
  121. Genome Biol Evol. 2015 Jan 09;7(2):567-80 [PMID: 25577199]
  122. Nucleic Acids Res. 1988 Jul 25;16(14A):6677-90 [PMID: 3399412]
  123. Nature. 2017 May 11;545(7653):175-180 [PMID: 28467829]
  124. Nat Rev Genet. 2019 Dec;20(12):760-772 [PMID: 31515540]
  125. Nucleic Acids Res. 2008 Jun;36(11):3746-56 [PMID: 18487627]
  126. BMC Bioinformatics. 2017 Mar 7;18(1):157 [PMID: 28270095]
  127. Genome Res. 2019 Dec;29(12):1996-2009 [PMID: 31694866]
  128. J Am Chem Soc. 2018 Aug 8;140(31):9783-9787 [PMID: 29944356]
  129. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]
  130. PLoS Genet. 2011 Apr;7(4):e1002036 [PMID: 21490963]
  131. EMBO J. 2012 May 16;31(10):2416-26 [PMID: 22473209]
  132. Nature. 2018 Oct;562(7726):281-285 [PMID: 30258225]
  133. Genome Res. 2006 Dec;16(12):1505-16 [PMID: 17038564]

MeSH Term

Animals
Evolution, Molecular
Humans
Mutation
Nucleosomes
Nucleotide Motifs

Chemicals

Nucleosomes

Word Cloud

Created with Highcharts 10.0.0nucleosomeDNAsequenceevolutionpositioninginfluencecanaccessibilityfactorsNucleosomecellprocessesrepairreviewmechanismsmajormodulatorcellularcriticalimportanceregulatingtranscriptionreplicationrecombinationpositionnucleosomesgenomesalthoughalsoimplicatedATP-dependentremodelerscompetitionbindingproteinsDifferentmotifspromoteinhibitformationthusinfluencingSequence-encodedfunctionalconsequencesselectedcounter-selectedinterplayfirstfocusdifferentwaysencodepositionsextentresponsiblegenome-widevivodiscussfindingsselectionsequencesnucleosomalpropertiesFinallyillustratedirectlyinteractionsdamageaimsprovideoverviewmutualpossiblyleadingcomplexevolutionarydynamicsCouplingSequence-MediatedOrganizationGenomeEvolutionmutationsequence-encodedorderingchromatindepletedregions

Similar Articles

Cited By