Using Machine Learning Algorithms to Develop a Clinical Decision-Making Tool for COVID-19 Inpatients.

Abhinav Vepa, Amer Saleem, Kambiz Rakhshan, Alireza Daneshkhah, Tabassom Sedighi, Shamarina Shohaimi, Amr Omar, Nader Salari, Omid Chatrabgoun, Diana Dharmaraj, Junaid Sami, Shital Parekh, Mohamed Ibrahim, Mohammed Raza, Poonam Kapila, Prithwiraj Chakrabarti
Author Information
  1. Abhinav Vepa: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK. ORCID
  2. Amer Saleem: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK. ORCID
  3. Kambiz Rakhshan: Leeds Sustainability Institute, Leeds Beckett University, Leeds LS1 3HE, UK. ORCID
  4. Alireza Daneshkhah: Research Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 5FB, UK.
  5. Tabassom Sedighi: Centre for Environment and Agricultural Informatics, Cranfield University, Bedfordshire MK43 0AL, UK.
  6. Shamarina Shohaimi: Department of Biology, Faculty of Science, University Putra Malaysia, Serdang, Selangor 43400, Malaysia. ORCID
  7. Amr Omar: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK.
  8. Nader Salari: Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran.
  9. Omid Chatrabgoun: Faculty of Mathematical Sciences & Statistics, Malayer University, Malayer 6571995863, Iran. ORCID
  10. Diana Dharmaraj: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK.
  11. Junaid Sami: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK.
  12. Shital Parekh: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK.
  13. Mohamed Ibrahim: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK.
  14. Mohammed Raza: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK.
  15. Poonam Kapila: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK.
  16. Prithwiraj Chakrabarti: Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes MK6 5LD, UK.

Abstract

BACKGROUND: Within the UK, COVID-19 has contributed towards over 103,000 deaths. Although multiple risk factors for COVID-19 have been identified, using this data to improve clinical care has proven challenging. The main aim of this study is to develop a reliable, multivariable predictive model for COVID-19 in-patient outcomes, thus enabling risk-stratification and earlier clinical decision-making.
METHODS: Anonymised data consisting of 44 independent predictor variables from 355 adults diagnosed with COVID-19, at a UK hospital, was manually extracted from electronic patient records for retrospective, case-control analysis. Primary outcomes included inpatient mortality, required ventilatory support, and duration of inpatient treatment. Pulmonary embolism sequala was the only secondary outcome. After balancing data, key variables were feature selected for each outcome using random forests. Predictive models were then learned and constructed using Bayesian networks.
RESULTS: The proposed probabilistic models were able to predict, using feature selected risk factors, the probability of the mentioned outcomes. Overall, our findings demonstrate reliable, multivariable, quantitative predictive models for four outcomes, which utilise readily available clinical information for COVID-19 adult inpatients. Further research is required to externally validate our models and demonstrate their utility as risk stratification and clinical decision-making tools.

Keywords

References

  1. J Biomed Inform. 2018 Sep;85:189-203 [PMID: 30031057]
  2. Hum Resour Health. 2020 Dec 17;18(1):100 [PMID: 33334335]
  3. Artif Intell Med. 2020 Jul;107:101912 [PMID: 32828451]
  4. Eur Urol. 2015 Jun;67(6):1142-1151 [PMID: 25572824]
  5. Front Oncol. 2015 Dec 03;5:272 [PMID: 26697407]
  6. Jpn J Radiol. 2020 May;38(5):409-410 [PMID: 32266524]
  7. J Bioinform Comput Biol. 2020 Aug;18(4):2050023 [PMID: 32706288]
  8. Head Neck. 2020 Jul;42(7):1629-1633 [PMID: 32342570]
  9. J Bioinform Comput Biol. 2005 Apr;3(2):185-205 [PMID: 15852500]
  10. Eur Respir J. 2020 May 14;55(5): [PMID: 32217650]
  11. J Biomed Inform. 2009 Apr;42(2):356-64 [PMID: 18824133]
  12. Influenza Other Respir Viruses. 2020 Jul;14(4):474-475 [PMID: 32246886]
  13. Bioinformatics. 2007 Oct 1;23(19):2507-17 [PMID: 17720704]
  14. Int J Infect Dis. 2020 May;94:154-155 [PMID: 32179137]
  15. West J Emerg Med. 2020 Apr 13;21(3):470-472 [PMID: 32302278]
  16. JAMA. 2020 May 26;323(20):2052-2059 [PMID: 32320003]
  17. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  18. BMJ. 2020 Apr 7;369:m1328 [PMID: 32265220]
  19. Sci China Life Sci. 2020 May;63(5):706-711 [PMID: 32146694]
  20. Respir Med. 2020 Jul;168:105980 [PMID: 32364959]
  21. Travel Med Infect Dis. 2020 May - Jun;35:101608 [PMID: 32114075]
  22. Nat Rev Genet. 2015 Jun;16(6):321-32 [PMID: 25948244]
  23. Eur Heart J Acute Cardiovasc Care. 2020 Apr;9(3):248-252 [PMID: 32347745]
  24. Korean J Anesthesiol. 2013 May;64(5):402-6 [PMID: 23741561]
  25. Malays J Pathol. 2020 Apr;42(1):23-35 [PMID: 32342928]
  26. BMJ. 2020 Apr 2;369:m1375 [PMID: 32241884]
  27. BMJ Open. 2013 Jun 28;3(6): [PMID: 23811171]
  28. Eur Respir J. 2020 Dec 24;56(6): [PMID: 32978307]
  29. Epidemiol Infect. 2020 Jun 25;148:e125 [PMID: 32580792]
  30. Future Healthc J. 2018 Feb;5(1):47-51 [PMID: 31098532]
  31. Global Health. 2020 Sep 29;16(1):92 [PMID: 32993696]
  32. BMJ. 2020 Sep 9;370:m3339 [PMID: 32907855]

MeSH Term

Adult
Algorithms
Bayes Theorem
COVID-19
Clinical Decision-Making
Humans
Inpatients
Machine Learning
Retrospective Studies
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0COVID-19riskusingclinicaloutcomesmodelsdataUKfactorsreliablemultivariablepredictivedecision-makingvariablesinpatientrequiredoutcomefeatureselectedrandomBayesiandemonstratestratificationBACKGROUND:Withincontributedtowards103000deathsAlthoughmultipleidentifiedimprovecareprovenchallengingmainaimstudydevelopmodelin-patientthusenablingrisk-stratificationearlierMETHODS:Anonymisedconsisting44independentpredictor355adultsdiagnosedhospitalmanuallyextractedelectronicpatientrecordsretrospectivecase-controlanalysisPrimaryincludedmortalityventilatorysupportdurationtreatmentPulmonaryembolismsequalasecondarybalancingkeyforestsPredictivelearnedconstructednetworksRESULTS:proposedprobabilisticablepredictprobabilitymentionedOverallfindingsquantitativefourutilisereadilyavailableinformationadultinpatientsresearchexternallyvalidateutilitytoolsUsingMachineLearningAlgorithmsDevelopClinicalDecision-MakingToolInpatientsnetworkSARSCoVforestsyntheticminorityoversamplingtechniqueSMOTE

Similar Articles

Cited By