Integrated Multi-Class Classification and Prediction of GPCR Allosteric Modulators by Machine Learning Intelligence.

Tianling Hou, Yuemin Bian, Terence McGuire, Xiang-Qun Xie
Author Information
  1. Tianling Hou: Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen (CCGS) Center and Pharmacometrics System Pharmacology Program, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
  2. Yuemin Bian: Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen (CCGS) Center and Pharmacometrics System Pharmacology Program, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA. ORCID
  3. Terence McGuire: Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen (CCGS) Center and Pharmacometrics System Pharmacology Program, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
  4. Xiang-Qun Xie: Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen (CCGS) Center and Pharmacometrics System Pharmacology Program, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.

Abstract

G-protein-coupled receptors (GPCRs) are the largest and most diverse group of cell surface receptors that respond to various extracellular signals. The allosteric modulation of GPCRs has emerged in recent years as a promising approach for developing target-selective therapies. Moreover, the discovery of new GPCR allosteric modulators can greatly benefit the further understanding of GPCR cell signaling mechanisms. It is critical but also challenging to make an accurate distinction of modulators for different GPCR groups in an efficient and effective manner. In this study, we focus on an 11-class classification task with 10 GPCR subtype classes and a random compounds class. We used a dataset containing 34,434 compounds with allosteric modulators collected from classical GPCR families A, B, and C, as well as random drug-like compounds. Six types of machine learning models, including support vector machine, naïve Bayes, decision tree, random forest, logistic regression, and multilayer perceptron, were trained using different combinations of features including molecular descriptors, Atom-pair fingerprints, MACCS fingerprints, and ECFP6 fingerprints. The performances of trained machine learning models with different feature combinations were closely investigated and discussed. To the best of our knowledge, this is the first work on the multi-class classification of GPCR allosteric modulators. We believe that the classification models developed in this study can be used as simple and accurate tools for the discovery and development of GPCR allosteric modulators.

Keywords

References

  1. Comput Struct Biotechnol J. 2019 Dec 26;18:241-252 [PMID: 33489002]
  2. Curr Pharm Des. 2006;12(17):2111-20 [PMID: 16796559]
  3. Bioinformatics. 2008 Oct 1;24(19):2149-56 [PMID: 18676415]
  4. Comb Chem High Throughput Screen. 2009 Jun;12(5):484-9 [PMID: 19519327]
  5. Trends Pharmacol Sci. 2020 Jun;41(6):382-384 [PMID: 32340753]
  6. Methods Mol Biol. 2020;2117:159-167 [PMID: 31960377]
  7. Nat Rev Drug Discov. 2017 Dec;16(12):829-842 [PMID: 29075003]
  8. Mol Pharm. 2019 Nov 4;16(11):4451-4460 [PMID: 31589460]
  9. Acta Pharmacol Sin. 2012 Mar;33(3):372-84 [PMID: 22266728]
  10. Cell. 2020 Apr 2;181(1):81-91 [PMID: 32243800]
  11. JAMA. 2016 Aug 2;316(5):533-4 [PMID: 27483067]
  12. Sci Rep. 2020 Oct 8;10(1):16771 [PMID: 33033310]
  13. Trends Pharmacol Sci. 2007 Aug;28(8):382-9 [PMID: 17629965]
  14. J Chem Inf Comput Sci. 2002 Nov-Dec;42(6):1273-80 [PMID: 12444722]
  15. Methods Mol Biol. 2016;1415:225-43 [PMID: 27115636]
  16. Adv Exp Med Biol. 2019;1163:225-251 [PMID: 31707706]
  17. Eur J Med Chem. 2020 Nov 15;206:112690 [PMID: 32818870]
  18. Bioinformatics. 2019 Nov 1;35(22):4862-4865 [PMID: 31116374]
  19. Biochim Biophys Acta. 1975 Oct 20;405(2):442-51 [PMID: 1180967]
  20. J Med Chem. 2016 May 12;59(9):4077-86 [PMID: 26881908]
  21. Biomolecules. 2020 Mar 14;10(3): [PMID: 32183371]
  22. Br J Pharmacol. 2018 Nov;175(21):4060-4071 [PMID: 29394497]
  23. Nat Rev Drug Discov. 2014 Sep;13(9):692-708 [PMID: 25176435]
  24. J Chem Inf Model. 2013 Jan 28;53(1):11-26 [PMID: 23278450]
  25. Curr Drug Discov Technol. 2017;14(4):244-254 [PMID: 28382857]
  26. Br J Pharmacol. 2015 Oct;172(20):4790-805 [PMID: 26218440]
  27. ACS Chem Biol. 2008 Sep 19;3(9):530-41 [PMID: 18652471]
  28. J Med Chem. 2005 Feb 24;48(4):1088-97 [PMID: 15715476]
  29. AAPS J. 2015 Sep;17(5):1080-95 [PMID: 25940084]
  30. Nat Rev Mol Cell Biol. 2009 Dec;10(12):819-30 [PMID: 19935667]
  31. Biomed Pharmacother. 2020 Aug;128:110255 [PMID: 32446113]
  32. J Chem Inf Model. 2005 Jan-Feb;45(1):177-82 [PMID: 15667143]
  33. J Chem Inf Model. 2011 Mar 28;51(3):521-31 [PMID: 21381738]
  34. Mol Pharm. 2019 Jun 3;16(6):2605-2615 [PMID: 31013097]
  35. Neurobiol Dis. 2014 Jan;61:55-71 [PMID: 24076101]
  36. Nature. 2020 Jan;577(7792):706-710 [PMID: 31942072]
  37. Nucleic Acids Res. 2016 Jan 4;44(D1):D527-35 [PMID: 26365237]
  38. J Mol Model. 2021 Feb 4;27(3):71 [PMID: 33543405]
  39. J Med Chem. 2008 Apr 24;51(8):2439-46 [PMID: 18363352]
  40. Chem Rev. 2016 Jun 8;116(11):6707-41 [PMID: 26882314]
  41. Methods. 2020 Aug 1;180:89-110 [PMID: 32645448]
  42. J Chem Inf Model. 2010 May 24;50(5):742-54 [PMID: 20426451]
  43. Sci Rep. 2017 Aug 25;7(1):9560 [PMID: 28842619]
  44. J Chem Inf Model. 2020 Sep 28;60(9):4180-4190 [PMID: 32573225]

Grants

  1. R56 AG074951/NIA NIH HHS
  2. P30 DA035778/NIDA NIH HHS
  3. P30 DA035778A1/NIDA NIH HHS
  4. R01 DA052329/NIDA NIH HHS

MeSH Term

Algorithms
Allosteric Regulation
Artificial Intelligence
Bayes Theorem
Databases, Factual
Forecasting
Humans
Ligands
Machine Learning
Models, Molecular
Receptors, G-Protein-Coupled
Support Vector Machine

Chemicals

Ligands
Receptors, G-Protein-Coupled

Word Cloud

Created with Highcharts 10.0.0GPCRallostericmodulatorsmachineGPCRsdifferentclassificationrandomcompoundslearningmodelsfingerprintsreceptorscelldiscoverycanaccuratestudyusedincludingtrainedcombinationsG-protein-coupledlargestdiversegroupsurfacerespondvariousextracellularsignalsmodulationemergedrecentyearspromisingapproachdevelopingtarget-selectivetherapiesMoreovernewgreatlybenefitunderstandingsignalingmechanismscriticalalsochallengingmakedistinctiongroupsefficienteffectivemannerfocus11-classtask10subtypeclassesclassdatasetcontaining34434collectedclassicalfamiliesBCwelldrug-likeSixtypessupportvectornaïveBayesdecisiontreeforestlogisticregressionmultilayerperceptronusingfeaturesmoleculardescriptorsAtom-pairMACCSECFP6performancesfeaturecloselyinvestigateddiscussedbestknowledgefirstworkmulti-classbelievedevelopedsimpletoolsdevelopmentIntegratedMulti-ClassClassificationPredictionAllostericModulatorsMachineLearningIntelligenceregulationdrugdesignfinger-prints

Similar Articles

Cited By