Magnesium Hydroxide Nanoparticles Kill Exponentially Growing and Persister Cells by Causing Physical Damage.

Yohei Nakamura, Kaede Okita, Daisuke Kudo, Dao Nguyen Duy Phuong, Yoshihito Iwamoto, Yoshie Yoshioka, Wataru Ariyoshi, Ryota Yamasaki
Author Information
  1. Yohei Nakamura: Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan.
  2. Kaede Okita: Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan.
  3. Daisuke Kudo: Kyowa Chemical Industry Co., Ltd., Hayashida-cho, Sakaide 762-0012, Kagawa, Japan.
  4. Dao Nguyen Duy Phuong: Kyowa Chemical Industry Co., Ltd., Hayashida-cho, Sakaide 762-0012, Kagawa, Japan.
  5. Yoshihito Iwamoto: Kyowa Chemical Industry Co., Ltd., Hayashida-cho, Sakaide 762-0012, Kagawa, Japan.
  6. Yoshie Yoshioka: Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan.
  7. Wataru Ariyoshi: Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan. ORCID
  8. Ryota Yamasaki: Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan. ORCID

Abstract

Magnesium hydroxide nanoparticles are widely used in medicinal and hygiene products because of their low toxicity, environment-friendliness, and low cost. Here, we studied the effects of three different sizes of magnesium hydroxide nanoparticles on antibacterial activity: NM80, NM300, and NM700. NM80 (D = 75.2 nm) showed a higher bactericidal effect against than larger nanoparticles (D = 328 nm (NM300) or 726 nm (NM700)). Moreover, NM80 showed a high bactericidal effect against not only exponential cells but also persister cells, which are difficult to eliminate owing to their high tolerance to antibiotics. NM80 eliminated strains in which magnesium-transport genes were knocked out and exhibited a bactericidal effect similar to that observed in the wild-type strain. The bactericidal action involved physical cell damage, as confirmed using scanning electron microscopy, which showed that cells treated with NM80 were directly injured.

Keywords

References

  1. J Exp Med. 1954 Feb;99(2):167-82 [PMID: 13130792]
  2. Environ Microbiol. 2018 Jun;20(6):2038-2048 [PMID: 29457686]
  3. Front Cell Infect Microbiol. 2020 Sep 18;10:496 [PMID: 33042869]
  4. Am J Ther. 1995 Aug;2(8):546-552 [PMID: 11854825]
  5. Biomimetics (Basel). 2019 Jun 25;4(2): [PMID: 31242662]
  6. J Photochem Photobiol B. 2018 Mar;180:235-242 [PMID: 29475122]
  7. J Bacteriol. 1976 Jun;126(3):1096-103 [PMID: 780341]
  8. Front Microbiol. 2021 Jan 28;12:622798 [PMID: 33584625]
  9. Nat Commun. 2018 May 18;9(1):1993 [PMID: 29777131]
  10. J Struct Biol. 2004 Apr-May;146(1-2):11-31 [PMID: 15037234]
  11. ACS Appl Mater Interfaces. 2013 Feb;5(3):1137-42 [PMID: 23301496]
  12. Science. 2004 Sep 10;305(5690):1622-5 [PMID: 15308767]
  13. Nature. 2019 Sep;573(7773):276-280 [PMID: 31485077]
  14. Environ Microbiol. 2015 Nov;17(11):4406-14 [PMID: 25858802]
  15. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  16. Mol Cell. 2019 Jan 3;73(1):143-156.e4 [PMID: 30472191]
  17. Biochemistry. 1994 Feb 22;33(7):1766-70 [PMID: 8110778]
  18. Int J Antimicrob Agents. 2018 Dec;52(6):842-853 [PMID: 30236955]
  19. Sci Rep. 2021 Jan 18;11(1):1703 [PMID: 33462370]
  20. Mol Syst Biol. 2006;2:2006.0008 [PMID: 16738554]
  21. J Microbiol. 2019 Mar;57(3):213-219 [PMID: 30806978]
  22. PLoS Biol. 2010 Feb 23;8(2):e1000317 [PMID: 20186264]
  23. Mol Microbiol. 1991 Nov;5(11):2753-62 [PMID: 1779764]
  24. Ann Clin Res. 1987;19(5):321-3 [PMID: 3126699]
  25. ACS Nano. 2018 Jul 24;12(7):6917-6925 [PMID: 29812907]
  26. Microorganisms. 2020 Apr 27;8(5): [PMID: 32349403]
  27. J Appl Microbiol. 2019 Dec;127(6):1768-1775 [PMID: 31487414]
  28. Microbiol Res. 2021 May;246:126709 [PMID: 33578264]
  29. iScience. 2020 Jan 24;23(1):100792 [PMID: 31926430]
  30. Front Microbiol. 2018 Mar 06;9:413 [PMID: 29559967]
  31. Antimicrob Agents Chemother. 2013 Mar;57(3):1468-73 [PMID: 23295927]
  32. Front Microbiol. 2018 Aug 03;9:1724 [PMID: 30123191]
  33. Exp Eye Res. 2017 Dec;165:118-124 [PMID: 28987318]
  34. Antibiotics (Basel). 2020 Aug 12;9(8): [PMID: 32806704]
  35. Front Microbiol. 2017 Oct 04;8:1917 [PMID: 29046671]
  36. Food Sci Nutr. 2020 Jun 01;8(7):3638-3646 [PMID: 32724626]
  37. Environ Microbiol. 2018 Jun;20(6):2085-2098 [PMID: 29528544]

Grants

  1. 20K18485/Japan Society for the Promotion of Science
  2. /Takeda Science Foundation

Word Cloud

Created with Highcharts 10.0.0NM80bactericidalhydroxidenanoparticlesnmshowedeffectcellsMagnesiumlowmagnesiumNM300NM700D=highpersisterwidelyusedmedicinalhygieneproductstoxicityenvironment-friendlinesscoststudiedeffectsthreedifferentsizesantibacterialactivity:752higherlarger328726Moreoverexponentialalsodifficulteliminateowingtoleranceantibioticseliminatedstrainsmagnesium-transportgenesknockedexhibitedsimilarobservedwild-typestrainactioninvolvedphysicalcelldamageconfirmedusingscanningelectronmicroscopytreateddirectlyinjuredHydroxideNanoparticlesKillExponentiallyGrowingPersisterCellsCausingPhysicalDamageEscherichiacolinanoparticlesterilization

Similar Articles

Cited By (6)