Genome Reorganization during Erythroid Differentiation.

Anastasia Ryzhkova, Nariman Battulin
Author Information
  1. Anastasia Ryzhkova: Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia.
  2. Nariman Battulin: Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia.

Abstract

Hematopoiesis is a convenient model to study how chromatin dynamics plays a decisive role in regulation of cell fate. During erythropoiesis a population of stem and progenitor cells becomes increasingly lineage restricted, giving rise to terminally differentiated progeny. The concerted action of transcription factors and epigenetic modifiers leads to a silencing of the multipotent transcriptome and activation of the transcriptional program that controls terminal differentiation. This article reviews some aspects of the biology of red blood cells production with the focus on the extensive chromatin reorganization during differentiation.

Keywords

References

  1. Proc Natl Acad Sci U S A. 1981 Oct;78(10):5968-72 [PMID: 6947211]
  2. J Cell Sci. 2000 Nov;113 Pt 21:3703-13 [PMID: 11034899]
  3. Blood. 2011 Oct 20;118(16):e128-38 [PMID: 21860024]
  4. Genes Dev. 2016 Apr 1;30(7):733-50 [PMID: 27036965]
  5. Cell. 2012 Dec 21;151(7):1608-16 [PMID: 23260146]
  6. Mol Cell Biol. 2011 Apr;31(8):1594-609 [PMID: 21321083]
  7. Nat Commun. 2020 Jun 1;11(1):2722 [PMID: 32483172]
  8. Blood. 2017 Apr 6;129(14):2002-2012 [PMID: 28167661]
  9. Haematologica. 2017 Jun;102(6):984-994 [PMID: 28255013]
  10. Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
  11. Gene. 2018 Jul 30;665:6-17 [PMID: 29704633]
  12. Mol Cell Biol. 2009 Apr;29(8):2278-95 [PMID: 19223465]
  13. Nature. 2019 Dec;576(7785):158-162 [PMID: 31776509]
  14. Epigenetics Chromatin. 2017 Jul 11;10(1):35 [PMID: 28693562]
  15. Blood. 2012 Jun 21;119(25):6118-27 [PMID: 22461493]
  16. Science. 2018 Feb 9;359(6376): [PMID: 29348367]
  17. J Biol Chem. 2010 Dec 17;285(51):40252-65 [PMID: 20940306]
  18. Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12868-12876 [PMID: 32457162]
  19. J Cell Sci. 1974 Nov;16(2):261-99 [PMID: 4141361]
  20. Can J Biochem. 1975 Nov;53(11):1158-69 [PMID: 1192258]
  21. Cell Res. 1997 Dec;7(2):143-50 [PMID: 9444393]
  22. Cell. 2014 Dec 18;159(7):1665-80 [PMID: 25497547]
  23. Nat Genet. 2018 Feb;50(2):238-249 [PMID: 29335546]
  24. Oncotarget. 2012 Apr;3(4):462-74 [PMID: 22577155]
  25. Cell Rep. 2019 Jun 11;27(11):3228-3240.e7 [PMID: 31189107]
  26. Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16992-7 [PMID: 21969536]
  27. Genes Dev. 2017 Aug 15;31(16):1704-1713 [PMID: 28916711]
  28. J Cell Biol. 1994 Apr;125(1):11-9 [PMID: 8138565]
  29. Cell Rep. 2020 Feb 18;30(7):2125-2135.e5 [PMID: 32075757]
  30. Genome Res. 2014 Mar;24(3):390-400 [PMID: 24398455]
  31. Mol Biol Cell. 2013 Oct;24(19):3025-37 [PMID: 23924899]
  32. Nature. 1980 Dec 11;288(5791):620-2 [PMID: 7442809]
  33. Autophagy. 2013 Jun 1;9(6):881-93 [PMID: 23508006]
  34. Cell Rep. 2017 Nov 28;21(9):2376-2383 [PMID: 29186677]
  35. Cell Rep. 2016 Aug 2;16(5):1470-1484 [PMID: 27452463]
  36. Cell Rep. 2013 Nov 27;5(4):926-32 [PMID: 24239357]
  37. Blood. 2011 Dec 8;118(24):6258-68 [PMID: 21998215]
  38. Blood. 2014 May 29;123(22):3466-77 [PMID: 24637361]
  39. Nat Genet. 2018 Dec;50(12):1744-1751 [PMID: 30374068]
  40. Biochim Biophys Acta. 2007 Jun;1773(6):924-33 [PMID: 17467075]
  41. PLoS One. 2013 Oct 08;8(10):e76062 [PMID: 24116088]
  42. Nat Genet. 2003 Oct;35(2):190-4 [PMID: 14517543]
  43. Experientia. 1964 Jan 15;20(1):13-4 [PMID: 5850489]
  44. Blood. 2020 Jan 16;135(3):208-219 [PMID: 31945154]
  45. Biophys Rev. 2019 Dec;11(6):873-894 [PMID: 31418139]
  46. Nature. 2005 Sep 29;437(7059):754-8 [PMID: 16193055]
  47. Haematologica. 2010 Dec;95(12):2013-21 [PMID: 20823130]
  48. Genes Dev. 2006 Sep 15;20(18):2566-79 [PMID: 16980585]
  49. Genes Dev. 2014 Oct 1;28(19):2151-62 [PMID: 25274727]
  50. Curr Opin Cell Biol. 2019 Jun;58:95-104 [PMID: 30908980]
  51. J Cell Biol. 1984 Jul;99(1 Pt 1):42-52 [PMID: 6736132]
  52. Mol Cell. 2010 Oct 8;40(1):9-21 [PMID: 20932471]
  53. Nature. 2010 Jul 22;466(7305):508-12 [PMID: 20622854]
  54. Dev Cell. 2016 Mar 7;36(5):498-510 [PMID: 26954545]
  55. Nucleic Acids Res. 2013 Mar 1;41(5):2797-806 [PMID: 23345616]
  56. Trends Cell Biol. 2011 Jul;21(7):409-15 [PMID: 21592797]
  57. Genome Res. 2019 Feb;29(2):236-249 [PMID: 30655336]
  58. Cell Rep. 2020 Sep 29;32(13):108206 [PMID: 32997998]
  59. Nat Cell Biol. 2008 Mar;10(3):314-21 [PMID: 18264091]
  60. Mol Cell. 2010 Oct 8;40(1):22-33 [PMID: 20932472]
  61. Sci Rep. 2021 Feb 24;11(1):4414 [PMID: 33627746]
  62. Science. 2011 Nov 11;334(6057):799-802 [PMID: 22076376]
  63. Blood Adv. 2018 Aug 14;2(15):1833-1852 [PMID: 30061308]
  64. Nature. 2012 Apr 11;485(7398):376-80 [PMID: 22495300]
  65. Can J Biochem. 1964 Dec;42:1743-52 [PMID: 14241608]
  66. Epigenetics Chromatin. 2018 May 28;11(1):22 [PMID: 29807547]
  67. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6506-11 [PMID: 16617109]
  68. Front Physiol. 2014 Jan 28;5:3 [PMID: 24478716]
  69. J Biol Chem. 2013 Mar 29;288(13):8805-14 [PMID: 23306203]
  70. Science. 2016 Jan 15;351(6270):285-9 [PMID: 26816381]
  71. Cell Res. 1999 Dec;9(4):255-60 [PMID: 10628834]
  72. Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2175-2180 [PMID: 30659153]
  73. Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12390-12399 [PMID: 31147463]
  74. Cell Syst. 2017 Dec 27;5(6):628-637.e6 [PMID: 29199022]
  75. Cell. 2017 Oct 19;171(3):557-572.e24 [PMID: 29053968]
  76. Nucleic Acids Res. 2019 Jan 25;47(2):648-665 [PMID: 30418618]
  77. PLoS One. 2017 Jul 21;12(7):e0180922 [PMID: 28732065]
  78. Cell Stem Cell. 2021 Mar 4;28(3):472-487.e7 [PMID: 33352111]
  79. Nature. 2015 Feb 19;518(7539):331-6 [PMID: 25693564]
  80. Blood. 2014 Sep 18;124(12):1931-40 [PMID: 25092175]
  81. Cancer Med. 2019 Mar;8(3):1169-1174 [PMID: 30701702]
  82. Science. 2013 Nov 22;342(6161):948-53 [PMID: 24200812]
  83. Nature. 2015 Jan 15;517(7534):321-6 [PMID: 25592537]
  84. EMBO J. 1997 Jun 2;16(11):3044-56 [PMID: 9214622]

MeSH Term

Animals
Cell Differentiation
Cell Lineage
Chromatin Assembly and Disassembly
Erythroid Precursor Cells
Erythropoiesis
Gene Expression Regulation
Genome
Humans
Transcription Factors

Chemicals

Transcription Factors

Word Cloud

Created with Highcharts 10.0.0chromatindifferentiationcellsHematopoiesisconvenientmodelstudydynamicsplaysdecisiveroleregulationcellfateerythropoiesispopulationstemprogenitorbecomesincreasinglylineagerestrictedgivingriseterminallydifferentiatedprogenyconcertedactiontranscriptionfactorsepigeneticmodifiersleadssilencingmultipotenttranscriptomeactivationtranscriptionalprogramcontrolsterminalarticlereviewsaspectsbiologyredbloodproductionfocusextensivereorganizationGenomeReorganizationErythroidDifferentiation3DgenomicsTADsorganizationerythroid

Similar Articles

Cited By