Application of peptide nucleic acid in electrochemical nucleic acid biosensors.

Haobo Sun, Jinming Kong, Xueji Zhang
Author Information
  1. Haobo Sun: School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.
  2. Jinming Kong: School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China. ORCID
  3. Xueji Zhang: School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.

Abstract

The early diagnosis of major diseases, such as malignant tumors, has always been an important field of research. Through screening, early detection of such diseases, and timely and effective treatment can significantly improve the survival rate of patients and reduce medical costs. Therefore, the development of a simple detection method with high sensitivity and strong specificity, and that is low cost is of great significance for the diagnosis and prognosis of the disease. Electrochemical DNA biosensing analysis is a technology based on Watson Crick base complementary pairing, which uses the capture probe of a known sequence to specifically recognize the target DNA and detect its concentration. Because of its advantages of low cost, simple operation, portability, and easy miniaturization, it has been widely researched and has become a cutting-edge topic in the field of biochemical analysis and precision medicine. However, the existing methods for electrochemical DNA biosensing analysis have some shortcomings, such as poor stability and specificity of capture probes, insufficient detection sensitivity, and long detection cycles. In this review, we focus on improving the sensitivity and practicability of electrochemical DNA biosensing analysis methods and summarize a series of research work carried out by using electrically neutral peptide nucleic acid as an immobilized capture probe.

Keywords

References

  1. W. Vercoutere, M. Akeson, Curr. Opin. Chem. Biol. 2002, 6, 816.
  2. H. H. Thorp, Trends Biotechnol. 1998, 16, 117.
  3. S. J. Salipante, D. R. Hoogestraat, D. J. SenGupta, D. Murphey, K. Panayides, E. Hamilton, I. Castañeda-Sánchez, J. Kennedy, P. W. Monsaas, L. Mendoza, K. Stephens, J. J. Dunn, B. T. Cookson, J. Clin. Microbiol. 2012, 50, 1480.
  4. P. F. Thomsen, J. Kielgast, L. L. Iversen, C. Wiuf, M. Rasmussen, M. T. P. Gilbert, L. Orlando, E. Willerslev, Mol. Ecol. 2012, 21, 2565.
  5. G. Chiti, G. Marrazza, M. Mascini, Anal. Chim. Acta 2001, 427, 155.
  6. K. Kerman, M. Kobayashi, E. Tamiya, Meas. Sci. Technol. 2003, 15, R1.
  7. H. Sun, Y. Qiu, Q. Liu, Q. Wang, Y. Huang, D. Wen, X. Zhang, Q. Liu, G. Liu, J. Kong, Biosens. Bioelectron. 2019, 131, 193.
  8. H. J. Parab, C. Jung, J.-H. Lee, H. G. Park, Biosens. Bioelectron. 2010, 26, 667.
  9. D. Santano, A. Urrutia, C. R. Zamarreño, I. D. Villar, IEEE Sens. J. 2020, 21, 1.
  10. J. Peng, Q. Huang, W. Zhuge, Y. Liu, C. Zhang, W. Yang, G. Xiang, Biosens. Bioelectron. 2018, 106, 212.
  11. J. Peng, Q. Huang, Y. Liu, P. Liu, C. Zhang, Sens. Actuators B 2019, 294, 157.
  12. H.-L. Cai, Y. Yang, Y.-H. Zhang, C.-J. Zhou, C.-R. Guo, J. Liu, T.-L. Ren, Mod. Phys. Lett. B 2014, 28, 1450056.
  13. H. Li, S. Xiao, D. Yao, M. H.-W. Lam, H. Liang, Chem. Commun. 2015, 51, 4670.
  14. J. Y. Peng, C. T. Hou, X. X. Liu, H. B. Li, X. Y. Hu, Talanta 2011, 86, 227.
  15. D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, Biosens. Bioelectron. 2001, 16, 121.
  16. Ü. Anik, Y. Tepeli, M. Sayhi, J. Nsiri, M. F. Diouani, Analyst 2018, 143, 150.
  17. S. Kumar, N. Verma, A. K. Singh, Sens. Actuators B 2017, 240, 248.
  18. A. Sassolas, B. D. Leca-Bouvier, L. J. Blum, Chem. Rev. 2008, 108, 109.
  19. G. Liu, R. Lao, L. Xu, Q. Xu, L. Li, M. Zhang, S. Song, C. Fan, Biosens. Bioelectron. 2013, 42, 516.
  20. F. Le Floch, H.-A. Ho, P. Harding-Lepage, M. Bédard, R. Neagu-Plesu, M. Leclerc, Adv. Mater. 2005, 17, 1251.
  21. J. Summerton, D. Weller, Antisense Nucleic Acid Drug Dev. 1997, 7, 187.
  22. R. M. Hudziak, E. Barofsky, D. F. Barofsky, D. L. Weller, S.-B. Huang, D. D. Weller, Antisense Nucleic Acid Drug Dev. 1996, 6, 267.
  23. C. Briones, M. Moreno, Anal. Bioanal. Chem. 2012, 402, 3071.
  24. A. A. Koshkin, S. K. Singh, P. Nielsen, V. K. Rajwanshi, R. Kumar, M. Meldgaard, C. E. Olsen, J. Wengel, Tetrahedron 1998, 54, 3607.
  25. B. Vester, J. Wengel, Biochemistry 2004, 43, 13233.
  26. D. A. Braasch, D. R. Corey, Chem. Biol. 2001, 8, 1.
  27. P. M. McTigue, R. J. Peterson, J. D. Kahn, Biochemistry 2004, 43, 5388.
  28. R. Owczarzy, Y. You, C. L. Groth, A. V. Tataurov, Biochemistry 2011, 50, 9352.
  29. Y. Han, F. An, J. Liu, J. Kong, X. Zhang, New J. Chem. 2020, 44, 20770.
  30. H. Sun, J. Kong, Q. Wang, Q. Liu, X. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 27568.
  31. H. Sun, Y. Qiu, Y. Lu, J. Kong, X. Zhang, Chem. Commun. 2020, 56, 6636.
  32. H. Sun, W. Xu, B. Liu, Q. Liu, Q. Wang, L. Li, J. Kong, X. Zhang, Anal. Chem. 2019, 91, 9198.
  33. C. Wang, J. Liu, J. Kong, X. Zhang, Anal. Chim. Acta 2020, 1136, 19.
  34. Q. Liu, L. Jian, R. Liu, H. Yang, J. Kong, X. Zhang, Chem. Eur. J. 2020, 26, 1633.
  35. M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, P. E. Nielsen, Nature 1993, 365, 566.
  36. P. Nielsen, M. Egholm, R. Berg, O. Buchardt, Science 1991, 254, 1497.
  37. F. P. Schwarz, S. Robinson, J. M. Butler, Nucleic Acids Res. 1999, 27, 4792.
  38. J. Liu, L. Tiefenauer, S. Tian, P. E. Nielsen, W. Knoll, Anal. Chem. 2006, 78, 470.
  39. J. Chun, T. Hla, K. R. Lynch, S. Spiegel, W. H. Moolenaar, Pharmacol. Rev. 2010, 62, 579.
  40. K. I. Izvolsky, V. V. Demidov, P. E. Nielsen, M. D. Frank-Kamenetskii, Biochemistry 2000, 39, 10908.
  41. B. Piro, V. Noël, S. Reisberg, in RNA and DNA Diagnostics (Eds: V. A. Erdmann, S. Jurga, J. Barciszewski), Springer International, Cham 2015, p. 47.
  42. S. Cauteruccio, E. Licandro, M. Panigati, G. D'Alfonso, S. Maiorana, Coord. Chem. Rev. 2019, 386, 119.
  43. P. Anstaett, G. Gasser, Chimia (Aarau) 2014, 68, 264.
  44. H. Sun, L. Qian, J. Kong, X. Zhang, Sens. Actuators B 2021, 337, 129791.
  45. H.-A. Joung, N.-R. Lee, S. K. Lee, J. Ahn, Y. B. Shin, H.-S. Choi, C.-S. Lee, S. Kim, M.-G. Kim, Anal. Chim. Acta 2008, 630, 168.
  46. M. Kaisti, A. Kerko, E. Aarikka, P. Saviranta, Z. Boeva, T. Soukka, A. Lehmusvuori, Sci. Rep. 2017, 7, 15734.
  47. A. Geiger, A. Lester, J. Kleiber, H. Ørum, Nucleosides Nucleotides 1998, 17, 1717.
  48. M. Xu, P. Fu, S. Xing, Y. Zhao, C. Zhao, ChemBioChem 2020, 21, 2667.
  49. S. O. Kelley, ACS Sensors 2017, 2, 193.
  50. B. Liu, H. Sun, L. Li, J. Zhang, J. Kong, X. Zhang, Microchim. Acta 2019, 187, 35.
  51. J. Li, L. Zhao, D. Wen, X. Li, H. Yang, D. Wang, J. Kong, Anal. Bioanal. Chem. 2020, 412, 4155.
  52. Q. Hu, X. Deng, X. Yu, J. Kong, X. Zhang, Biosens. Bioelectron. 2015, 65, 71.
  53. F. Liu, Q. Xu, W. Huang, Z. Zhang, G. Xiang, C. Zhang, C. Liang, H. Lian, J. Peng, Electrochim. Acta 2019, 295, 615.
  54. J. Peng, C. Hou, X. Hu, Sens. Actuators B 2012, 169, 81.
  55. X. Miao, X. Guo, Z. Xiao, L. Ling, Biosens. Bioelectron. 2014, 59, 54.
  56. Y. Qian, C. Wang, F. Gao, Talanta 2014, 130, 33.
  57. W. Wei, Q. Ni, Y. Pu, L. Yin, S. Liu, J. Electroanal. Chem. 2014, 714-715, 25.
  58. C. Xu, H. Cai, P. He, Y. Fang, Analyst 2001, 126, 62.
  59. J. Liu, J. Song, T. Qi, C. Zhang, J. Qu, Adv. Powder Technol. 2016, 27, 1.
  60. C. Fang, H. Ji, W. Y. Karen, S. R. M. Rafei, Biosens. Bioelectron. 2011, 26, 2670.
  61. M. Ali, R. Neumann, W. Ensinger, ACS Nano 2010, 4, 7267.
  62. S. Xing, X. Xu, P. Fu, M. Xu, T. Gao, X. Zhang, C. Zhao, Colloids Surf. B 2019, 181, 333.
  63. W. Xu, S. Xing, X. Xu, M. Xu, P. Fu, T. Gao, C. Zhao, ACS Omega 2018, 3, 17835.
  64. J. Lee, I.-S. Park, E. Jung, Y. Lee, D.-H. Min, Biosens. Bioelectron. 2014, 62, 140.
  65. P. Fu, S. Xing, M. Xu, Y. Zhao, C. Zhao, Sens. Actuators B 2020, 305, 127545.
  66. P. Harding Lepage, R. Peytavi, M. G. Bergeron, M. Leclerc, Anal. Chem. 2011, 83, 8086.
  67. Y. Wu, S. Liu, L. He, Anal. Chem. 2009, 81, 7015.
  68. J.-S. Wang, K. Matyjaszewski, J. Am. Chem. Soc. 1995, 117, 5614.
  69. J.-S. Wang, K. Matyjaszewski, Macromolecules 1995, 28, 7901.
  70. Q. Hu, Q. Wang, G. Sun, J. Kong, X. Zhang, Anal. Chem. 2017, 89, 9253.
  71. H. Tan, S. Yang, G. Shen, R. Yu, Z. Wu, Angew. Chem. Int. Ed. 2010, 49, 8608.
  72. F. Patolsky, Y. Weizmann, I. Willner, J. Am. Chem. Soc. 2002, 124, 770.
  73. G. Wu, N. Yang, T. Zhang, Z. Wang, X. Lu, J. Kang, Sens. Actuators B 2011, 160, 598.
  74. A. Anastasaki, V. Nikolaou, F. Brandford-Adams, G. Nurumbetov, Q. Zhang, G. J. Clarkson, D. J. Fox, P. Wilson, K. Kempe, D. M. Haddleton, Chem. Commun. 2015, 51, 5626.
  75. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
  76. G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2009, 62, 1402.
  77. Q. Hu, D. Han, S. Gan, Y. Bao, L. Niu, Anal. Chem. 2018, 90, 12207.
  78. Q. Hu, J. Kong, D. Han, L. Niu, X. Zhang, ACS Sensors 2019, 4, 235.
  79. W. Liu, L. Ma, Z. Guo, T. Liu, Y. Liu, D. Wang, J. Kong, Anal. Sci. 2020, 36, 681.

Grants

  1. 21890740/National Natural Science Foundation of China
  2. 9195401/National Natural Science Foundation of China
  3. 21890742/National Natural Science Foundation of China
  4. 21974068/National Natural Science Foundation of China

MeSH Term

Biosensing Techniques
DNA
Electrochemical Techniques
Humans
Nucleic Acid Hybridization
Nucleic Acids
Peptide Nucleic Acids

Chemicals

Nucleic Acids
Peptide Nucleic Acids
DNA

Word Cloud

Created with Highcharts 10.0.0nucleicaciddetectionDNAanalysissensitivitybiosensingcaptureelectrochemicalpeptideearlydiagnosisdiseasesfieldresearchsimplespecificitylowcostprobemethodsmajormalignanttumorsalwaysimportantscreeningtimelyeffectivetreatmentcansignificantlyimprovesurvivalratepatientsreducemedicalcostsThereforedevelopmentmethodhighstronggreatsignificanceprognosisdiseaseElectrochemicaltechnologybasedWatsonCrickbasecomplementarypairingusesknownsequencespecificallyrecognizetargetdetectconcentrationadvantagesoperationportabilityeasyminiaturizationwidelyresearchedbecomecutting-edgetopicbiochemicalprecisionmedicineHoweverexistingshortcomingspoorstabilityprobesinsufficientlongcyclesreviewfocusimprovingpracticabilitysummarizeseriesworkcarriedusingelectricallyneutralimmobilizedApplicationbiosensorsATRPRAFTbiosensor

Similar Articles

Cited By