A meta-analysis reveals edge effects within marine protected areas.

Sarah Ohayon, Itai Granot, Jonathan Belmaker
Author Information
  1. Sarah Ohayon: School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. saraorca@gmail.com. ORCID
  2. Itai Granot: School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. ORCID
  3. Jonathan Belmaker: School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. ORCID

Abstract

Marine protected areas (MPAs) play a leading role in conserving and restoring marine environments. MPAs can benefit both marine populations within their boundaries and external populations owing to a net export of organisms (spillover). However, little is known about variation in performance within MPAs. For example, edge effects may degrade populations within MPAs close to their boundaries. Here we synthesize empirical estimates of 72 taxa of fish and invertebrates to explore spatial patterns across the borders of 27 no-take MPAs. We show that there is a prominent and consistent edge effect that extends approximately 1 km within the MPA, in which population sizes on the border are 60% smaller than those in the core area. Our analysis of cross-boundary population trends suggests that, globally, the smallest 64% of no-take MPAs (those of less than 10 km in area) may hold only about half (45-56%) of the population size that is implied by their area. MPAs with buffer zones did not display edge effects, suggesting that extending no-take areas beyond the target habitats and managing fishing activities around MPA borders are critical for boosting MPA performance.

Associated Data

figshare | 10.6084/m9.figshare.14578344.v1

References

  1. Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015). [DOI: 10.1016/j.tree.2015.06.011]
  2. Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014). [DOI: 10.1038/nature13022]
  3. Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: a regional meta-analysis. Sci. Rep. 7, 8940 (2017). [DOI: 10.1038/s41598-017-08850-w]
  4. Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018). [DOI: 10.1093/icesjms/fsx059]
  5. Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998). [DOI: 10.1126/science.280.5372.2126]
  6. Hansen, A. J. & Defries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2016). [DOI: 10.1890/05-1098]
  7. Roberts, C. M., Halpern, B., Palumbi, S. R. & Warner, R. R. Designing marine reserve networks. Why small, isolated protected areas are not enough. Conserv. Pract. 2, 10–17 (2001). [DOI: 10.1111/j.1526-4629.2001.tb00012.x]
  8. Walters, C. Impacts of dispersal, ecological interactions, and fishing effort dynamics on efficacy of marine protected areas: how large should protected areas be? Bull. Mar. Sci. 66, 745–757 (2000).
  9. Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999). [DOI: 10.1023/A]
  10. Guidetti, P. et al. Large-scale assessment of Mediterranean marine protected areas effects on fish assemblages. PLoS One 9, e91841 (2014). [DOI: 10.1371/journal.pone.0091841]
  11. Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009). [DOI: 10.3354/meps08029]
  12. Di Lorenzo, M., Claudet, J. & Guidetti, P. Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. J. Nat. Conserv. 32, 62–66 (2016). [DOI: 10.1016/j.jnc.2016.04.004]
  13. Harmelin-Vivien, M. et al. Gradients of abundance and biomass across reserve boundaries in six Mediterranean marine protected areas: evidence of fish spillover? Biol. Conserv. 141, 1829–1839 (2008). [DOI: 10.1016/j.biocon.2008.04.029]
  14. Abesamis, R. A. & Russ, G. R. Density-dependent spillover from a marine reserve: long-term evidence. Ecol. Appl. 15, 1798–1812 (2005). [DOI: 10.1890/05-0174]
  15. Murawski, S. A., Wigley, S. E., Fogarty, M. J., Rago, P. J. & Mountain, D. G. Effort distribution and catch patterns adjacent to temperate MPAs. ICES J. Mar. Sci. 62, 1150–1167 (2005). [DOI: 10.1016/j.icesjms.2005.04.005]
  16. Kellner, J. B., Tetreault, I., Gaines, S. D. & Nisbet, R. M. Fishing the line near marine reserves in single and multispecies fisheries. Ecol. Appl. 17, 1039–1054 (2007). [DOI: 10.1890/05-1845]
  17. Stelzenmüller, V. et al. Spatial assessment of fishing effort around European marine reserves: implications for successful fisheries management. Mar. Pollut. Bull. 56, 2018–2026 (2008). [DOI: 10.1016/j.marpolbul.2008.08.006]
  18. Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2010). [DOI: 10.1017/S0376892910000032]
  19. Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008). [DOI: 10.1890/070003]
  20. Defries, R., Hansen, A., Newton, A. C. & Hansen, M. C. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 15, 19–26 (2005). [DOI: 10.1890/03-5258]
  21. MPAtlas (Marine Conservation Institute, accessed 4 July 2020); http://www.mpatlas.org
  22. Willis, T. J., Millar, R. B., Babcock, R. C. & Tolimieri, N. Burdens of evidence and the benefits of marine reserves: putting Descartes before des horse? Environ. Conserv. 30, 97–103 (2003). [DOI: 10.1017/S0376892903000092]
  23. Roberts, C. M. et al. Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol. Appl. 13, 215–228 (2003). [DOI: 10.1890/1051-0761(2003)013[0215]
  24. Huntington, B. E., Karnauskas, M., Babcock, E. A. & Lirman, D. Untangling natural seascape variation from marine reserve effects using a landscape approach. PLoS One 5, e12327 (2010). [DOI: 10.1371/journal.pone.0012327]
  25. Miller, K. I. & Russ, G. R. Studies of no-take marine reserves: methods for differentiating reserve and habitat effects. Ocean Coast. Manag. 96, 51–60 (2014). [DOI: 10.1016/j.ocecoaman.2014.05.003]
  26. Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–671 (2017). [DOI: 10.1038/nature21708]
  27. Brill, G. C. & Raemaekers, S. J. P. N. A decade of illegal fishing in Table Mountain National Park (2000–2009): trends in the illicit harvest of abalone Haliotis midae and West Coast rock lobster Jasus lalandii. African. J. Mar. Sci. 35, 491–500 (2013).
  28. Harasti, D., Davis, T. R., Jordan, A., Erskine, L. & Moltschaniwskyj, N. Illegal recreational fishing causes a decline in a fishery targeted species (snapper: Chrysophrys auratus) within a remote no-take marine protected area. PLoS One 14, e0209926 (2019). [DOI: 10.1371/journal.pone.0209926]
  29. Kleiven, P. J. N. et al. Fishing pressure impacts the abundance gradient of European lobsters across the borders of a newly established marine protected area. Proc. R. Soc. B Biol. Sci. 286, 20182455 (2019). [DOI: 10.1098/rspb.2018.2455]
  30. Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544 (2016). [DOI: 10.1038/ncomms10544]
  31. Sarà, G. et al. Effect of boat noise on the behavior of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 331, 243–253 (2007). [DOI: 10.3354/meps331243]
  32. Tran, D. S. C., Langel, K. A., Thomas, M. J. & Blumstein, D. T. Spearfishing-induced behavioral changes of an unharvested species inside and outside a marine protected area. Curr. Zool. 62, 39–44 (2016). [DOI: 10.1093/cz/zov006]
  33. Jiao, J., Pilyugin, S. S., Riotte-Lambert, L. & Osenberg, C. W. Habitat-dependent movement rate can determine the efficacy of marine protected areas. Ecology 99, 2485–2495 (2018). [DOI: 10.1002/ecy.2477]
  34. Potts, J. R., Hillen, T. & Lewis, M. A. The ‘edge effect’ phenomenon: deriving population abundance patterns from individual animal movement decisions. Theor. Ecol. 9, 233–247 (2016). [DOI: 10.1007/s12080-015-0283-7]
  35. Gerber, L. R. et al. Population models for marine reserve design: a retrospective and prospective synthesis. Ecol. Appl. 13, 47–64 (2003). [DOI: 10.1890/1051-0761(2003)013[0047]
  36. Malvadkar, U. & Hastings, A.Persistence of mobile species in marine protected areas. Fish. Res. 91, 69–78 (2008). [DOI: 10.1016/j.fishres.2007.11.023]
  37. Di Lorenzo, M., Guidetti, P., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: a meta-analytical approach. Fish Fish. 21, 906–915 (2020). [DOI: 10.1111/faf.12469]
  38. Goñi, R., Quetglas, A. & Reñones, O. Spillover of spiny lobsters Palinurus elephas from a marine reserve to an adjoining fishery. Mar. Ecol. Prog. Ser. 308, 207–219 (2006). [DOI: 10.3354/meps308207]
  39. Stamoulis, K. A. & Friedlander, A. M. A seascape approach to investigating fish spillover across a marine protected area boundary in Hawai’i. Fish. Res. 144, 2–14 (2013). [DOI: 10.1016/j.fishres.2012.09.016]
  40. Protected Planet: the World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed July 2020); http://www.protectedplanet.net
  41. Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS One 8, e81847 (2013). [DOI: 10.1371/journal.pone.0081847]
  42. Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013). [DOI: 10.1111/j.1600-0587.2013.00291.x]
  43. Froese, R. & Pauly, D. (eds). FishBase (accessed May 2020); http://www.fishbase.org
  44. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999). [DOI: 10.1890/0012-9658(1999)080[1150]
  45. Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).
  46. Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018). [DOI: 10.7717/peerj.4794]
  47. R Core Team. R: a language and environment for statistical computing. v.3.6.1 (2019).
  48. QGIS Geographic Information System. Open Source Geospatial Foundation Project (QGIS Development Team, 2020); http://qgis.osgeo.org
  49. Harmelin-Vivien, M. et al. Species richness, abundance and biomass data for assessing fish spillover from Mediterranean marine protected areas. SEANOE https://doi.org/10.17882/74396 (2020).

MeSH Term

Animals
Conservation of Natural Resources
Ecosystem
Invertebrates
Population Density

Word Cloud

Created with Highcharts 10.0.0MPAswithinedgeareasmarinepopulationseffectsno-takeMPApopulationareaprotectedboundariesperformancemaybordersMarineplayleadingroleconservingrestoringenvironmentscanbenefitexternalowingnetexportorganismsspilloverHoweverlittleknownvariationexampledegradeclosesynthesizeempiricalestimates72taxafishinvertebratesexplorespatialpatternsacross27showprominentconsistenteffectextendsapproximately1 kmsizesborder60%smallercoreanalysiscross-boundarytrendssuggestsgloballysmallest64%less10 kmholdhalf45-56%sizeimpliedbufferzonesdisplaysuggestingextendingbeyondtargethabitatsmanagingfishingactivitiesaroundcriticalboostingmeta-analysisreveals

Similar Articles

Cited By