Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans.

Sergio D Moreno-Velásquez, J Christian Pérez
Author Information
  1. Sergio D Moreno-Velásquez: Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany.
  2. J Christian Pérez: Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

Abstract

The study of gene expression in fungi has typically relied on measuring transcripts in populations of cells. A major disadvantage of this approach is that the transcripts' spatial distribution and stochastic variation among individual cells within a clonal population is lost. Traditional fluorescence hybridization techniques have been of limited use in fungi due to poor specificity and high background signal. Here, we report that hybridization chain reaction (HCR), a method that employs split-initiator probes to trigger signal amplification upon mRNA-probe hybridization, is ideally suited for the imaging and quantification of low-abundance transcripts at single-cell resolution in the fungus Candida albicans. We show that HCR allows the absolute quantification of transcripts within a cell by microscopy as well as their relative quantification by flow cytometry. mRNA imaging also revealed the subcellular localization of specific transcripts. Furthermore, we establish that HCR is amenable to multiplexing by visualizing different transcripts in the same cell. Finally, we combine HCR with immunostaining to image specific mRNAs and proteins simultaneously within a single C. albicans cell. The fungus is a major pathogen in humans where it can colonize and invade mucosal surfaces and most internal organs. The technical development that we introduce, therefore, paves the way to study the patterns of expression of pathogenesis-associated C. albicans genes in infected organs at single-cell resolution. Tools to visualize and quantify transcripts at single-cell resolution have enabled the dissection of spatiotemporal patterns of gene expression in animal cells and tissues. Yet the accurate quantification of transcripts at single-cell resolution remains challenging for the much smaller microbial cells. Widespread phenomena such as stochastic variation in transcript levels among cells-even within a clonal population-seem to play important roles in the biology of many microorganisms. Investigating this process requires microbial cell-optimized procedures to image and measure mRNAs at single-molecule resolution. In this report, we adapt and expand hybridization chain reaction (HCR) combined with split-initiator probes to visualize transcripts in the human-pathogenic fungus Candida albicans at high resolution.

Keywords

References

  1. Science. 2021 Feb 19;371(6531): [PMID: 33335020]
  2. Nature. 2020 Nov;587(7835):619-625 [PMID: 33208946]
  3. Nat Biotechnol. 2010 Nov;28(11):1208-12 [PMID: 21037591]
  4. Nat Microbiol. 2020 Oct;5(10):1202-1206 [PMID: 32807892]
  5. Nucleic Acids Res. 2017 Sep 6;45(15):e141 [PMID: 28666354]
  6. BMC Genomics. 2008 Nov 29;9:574 [PMID: 19040753]
  7. Mol Cell Biol. 1986 Nov;6(11):3711-21 [PMID: 3025610]
  8. EMBO J. 2019 May 15;38(10): [PMID: 30910878]
  9. Sci Data. 2019 Jun 17;6(1):94 [PMID: 31209217]
  10. Proc Natl Acad Sci U S A. 2013 May 7;110(19):7660-5 [PMID: 23610392]
  11. Development. 2018 Jan 8;145(1): [PMID: 29311262]
  12. Nat Protoc. 2006;1(6):3111-20 [PMID: 17406574]
  13. Science. 1998 Apr 24;280(5363):585-90 [PMID: 9554849]
  14. EMBO J. 2011 Jul 26;30(17):3567-80 [PMID: 21792172]
  15. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6329-34 [PMID: 21444810]
  16. Eukaryot Cell. 2013 Jul;12(7):1020-32 [PMID: 23687116]
  17. Development. 2018 Jun 26;145(12): [PMID: 29945988]
  18. Elife. 2020 May 18;9: [PMID: 32420869]
  19. Mol Cell. 2018 Aug 2;71(3):468-480 [PMID: 30075145]
  20. PLoS Biol. 2013;11(3):e1001510 [PMID: 23526879]
  21. PLoS Genet. 2009 Sep;5(9):e1000664 [PMID: 19779551]
  22. Sci Rep. 2020 Jan 15;10(1):351 [PMID: 31942002]
  23. Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15275-8 [PMID: 15492210]
  24. PLoS Biol. 2017 May 9;15(5):e2000644 [PMID: 28486496]
  25. Nat Methods. 2008 Oct;5(10):877-9 [PMID: 18806792]
  26. mBio. 2012 Jul 24;3(4):e00117-12 [PMID: 22829676]
  27. ACS Nano. 2014 May 27;8(5):4284-94 [PMID: 24712299]
  28. PLoS Pathog. 2009 Oct;5(10):e1000612 [PMID: 19816560]
  29. Development. 2016 Oct 1;143(19):3632-3637 [PMID: 27702788]
  30. Nature. 1997 Sep 4;389(6646):90-3 [PMID: 9288973]
  31. Mol Microbiol. 1999 Nov;34(4):792-8 [PMID: 10564518]
  32. Microbiol Mol Biol Rev. 2018 Apr 11;82(2): [PMID: 29643171]
  33. Nat Protoc. 2008;3(7):1194-201 [PMID: 18600225]
  34. Nat Protoc. 2009;4(5):605-18 [PMID: 19360017]
  35. Microbiology (Reading). 2012 May;158(Pt 5):1258-1267 [PMID: 22343349]
  36. Methods Cell Biol. 2008;87:169-85 [PMID: 18485297]
  37. PLoS One. 2011;6(9):e25623 [PMID: 21980509]
  38. J Biol Chem. 2002 Apr 26;277(17):14363-6 [PMID: 11882647]
  39. Nat Protoc. 2008;3(1):59-69 [PMID: 18193022]
  40. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  41. Zebrafish. 2005;2(2):105-11 [PMID: 18248170]
  42. Proc Natl Acad Sci U S A. 1969 Jun;63(2):378-83 [PMID: 4895535]
  43. Microbiology (Reading). 1997 Feb;143 ( Pt 2):321-330 [PMID: 9043109]
  44. Curr Genet. 2017 Dec;63(6):989-995 [PMID: 28512683]
  45. Antimicrob Agents Chemother. 2017 Sep 22;61(10): [PMID: 28760907]
  46. mSphere. 2017 Apr 26;2(2): [PMID: 28497115]
  47. Am J Hum Genet. 1992 Jul;51(1):55-65 [PMID: 1609805]
  48. Mol Microbiol. 2017 May;104(3):499-519 [PMID: 28187496]
  49. Nat Rev Nephrol. 2018 Aug;14(8):479-492 [PMID: 29789704]
  50. Cell Rep. 2020 Jan 21;30(3):620-629.e6 [PMID: 31968241]

MeSH Term

Candida albicans
Candidiasis
Humans
In Situ Hybridization, Fluorescence
RNA, Messenger
Single-Cell Analysis

Chemicals

RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0transcriptsresolutionalbicanshybridizationHCRsingle-cellcellswithinquantificationCandidaexpressionchainreactionfunguscellmRNAstudygenefungimajorstochasticvariationamongclonalhighsignalreportsplit-initiatorprobesimagingspecificimagemRNAsCorganspatternsvisualizemicrobialtypicallyreliedmeasuringpopulationsdisadvantageapproachtranscripts'spatialdistributionindividualpopulationlostTraditionalfluorescencetechniqueslimiteduseduepoorspecificitybackgroundmethodemploystriggeramplificationuponmRNA-probeideallysuitedlow-abundanceshowallowsabsolutemicroscopywellrelativeflowcytometryalsorevealedsubcellularlocalizationFurthermoreestablishamenablemultiplexingvisualizingdifferentFinallycombineimmunostainingproteinssimultaneouslysinglepathogenhumanscancolonizeinvademucosalsurfacesinternaltechnicaldevelopmentintroducethereforepaveswaypathogenesis-associatedgenesinfectedToolsquantifyenableddissectionspatiotemporalanimaltissuesYetaccurateremainschallengingmuchsmallerWidespreadphenomenatranscriptlevelscells-evenpopulation-seemplayimportantrolesbiologymanymicroorganismsInvestigatingprocessrequirescell-optimizedproceduresmeasuresingle-moleculeadaptexpandcombinedhuman-pathogenicImagingQuantificationMoleculesSingle-CellResolutionHumanFungalPathogenFISHanalysis

Similar Articles

Cited By (5)