Spontaneous Electric Fields Play a Key Role in Thermochemical Catalysis at Metal-Liquid Interfaces.

Thejas S Wesley, Yuriy Román-Leshkov, Yogesh Surendranath
Author Information
  1. Thejas S Wesley: Department of Chemical Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States. ORCID
  2. Yuriy Román-Leshkov: Department of Chemical Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States. ORCID
  3. Yogesh Surendranath: Department of Chemical Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States. ORCID

Abstract

Large oriented electric fields spontaneously arise at all solid-liquid interfaces via the exchange of ions and/or electrons with the solution. Although intrinsic electric fields are known to play an important role in molecular and biological catalysis, the role of spontaneous polarization in heterogeneous thermocatalysis remains unclear because the catalysts employed are typically disconnected from an external circuit, which makes it difficult to monitor or control the degree of electrical polarization of the surface. Here, we address this knowledge gap by developing general methods for wirelessly monitoring and controlling spontaneous electrical polarization at conductive catalysts dispersed in liquid media. By combining electrochemical and spectroscopic measurements, we demonstrate that proton and electron transfer from solution controllably, spontaneously, and wirelessly polarize Pt surfaces during thermochemical catalysis. We employ liquid-phase ethylene hydrogenation on a Pt/C catalyst as a thermochemical probe reaction and observe that the rate of this nonpolar hydrogenation reaction is significantly influenced by spontaneous electric fields generated by both interfacial proton transfer in water and interfacial electron transfer from organometallic redox buffers in a polar aprotic -difluorobenzene solvent. Across these vastly disparate reaction media, we observe quantitatively similar scaling of ethylene hydrogenation rates with the Pt open-circuit electrochemical potential ( ). These results isolate the role of interfacial electrostatic effects from medium-specific chemical interactions and establish that spontaneous interfacial electric fields play a critical role in liquid-phase heterogeneous catalysis. Consequently, -a generally overlooked parameter in heterogeneous catalysis-warrants consideration in mechanistic studies of thermochemical reactions at solid-liquid interfaces, alongside chemical factors such as temperature, reactant activities, and catalyst structure. Indeed, this work establishes the experimental and conceptual foundation for harnessing electric fields to both elucidate surface chemistry and manipulate preparative thermochemical catalysis.

References

  1. J Am Chem Soc. 2013 Jul 31;135(30):11257-65 [PMID: 23837635]
  2. J Am Chem Soc. 2005 May 11;127(18):6819-29 [PMID: 15869305]
  3. ACS Cent Sci. 2020 Feb 26;6(2):304-311 [PMID: 32123749]
  4. Chem Sci. 2015 May 1;6(5):3268 [PMID: 30124683]
  5. Science. 2018 Jun 22;360(6395):1339-1342 [PMID: 29930134]
  6. Langmuir. 2006 Jan 31;22(3):1079-85 [PMID: 16430268]
  7. Chem Soc Rev. 2018 Feb 5;47(3):852-908 [PMID: 29318245]
  8. Electrochim Acta. 2018;281: [PMID: 35530257]
  9. Chem Sci. 2015 Oct 1;6(10):5623-5627 [PMID: 29861899]
  10. Inorg Chem. 2017 Mar 20;56(6):3713-3718 [PMID: 28240885]
  11. J Am Chem Soc. 2014 Jul 23;136(29):10349-60 [PMID: 24977791]
  12. Nat Chem. 2016 Nov 22;8(12):1091-1098 [PMID: 27874869]
  13. J Am Chem Soc. 2020 Dec 9;142(49):20855-20864 [PMID: 33231443]
  14. Angew Chem Int Ed Engl. 2018 Nov 19;57(47):15410-15414 [PMID: 30207630]
  15. J Am Chem Soc. 2020 Jul 22;142(29):12551-12562 [PMID: 32551571]
  16. J Am Chem Soc. 2016 Jan 20;138(2):574-86 [PMID: 26597848]
  17. Nature. 2016 Mar 3;531(7592):88-91 [PMID: 26935697]
  18. Chem Commun (Camb). 2016 Oct 18;52(85):12665-12668 [PMID: 27722249]
  19. JACS Au. 2020 Dec 21;1(1):8-12 [PMID: 34467267]
  20. J Am Chem Soc. 2016 Dec 28;138(51):16639-16644 [PMID: 27976580]
  21. Chem Sci. 2018 Feb 7;9(9):2567-2574 [PMID: 29732136]
  22. Science. 2014 Dec 19;346(6216):1510-4 [PMID: 25525245]
  23. Science. 2021 Feb 5;371(6529):626-632 [PMID: 33542136]
  24. Chem Sci. 2019 Sep 9;10(43):10135-10142 [PMID: 32015820]
  25. Angew Chem Int Ed Engl. 2019 Mar 11;58(11):3527-3532 [PMID: 30556940]
  26. J Am Chem Soc. 2017 Aug 16;139(32):11277-11287 [PMID: 28738673]
  27. J Am Chem Soc. 2012 Jan 11;134(1):186-9 [PMID: 22191979]
  28. Science. 2020 Oct 23;370(6515):437-441 [PMID: 33093105]
  29. J Am Chem Soc. 2019 Oct 2;141(39):15524-15531 [PMID: 31433173]
  30. J Am Chem Soc. 2011 Oct 19;133(41):16459-67 [PMID: 21942729]
  31. Chem Soc Rev. 2020 Jun 21;49(12):3764-3782 [PMID: 32459227]
  32. Phys Chem Chem Phys. 2008 Jul 7;10(25):3613-27 [PMID: 18563222]
  33. J Phys Chem C Nanomater Interfaces. 2017 Aug 17;121(32):17176-17187 [PMID: 28845207]
  34. Chem Sci. 2017 Apr 1;8(4):2790-2794 [PMID: 28553515]
  35. ACS Cent Sci. 2019 Nov 27;5(11):1795-1803 [PMID: 31807681]
  36. Science. 2010 Oct 1;330(6000):74-8 [PMID: 20929807]
  37. Phys Chem Chem Phys. 2009 Jan 28;11(4):641-9 [PMID: 19835085]

Word Cloud

Created with Highcharts 10.0.0electricfieldsrolecatalysisspontaneousthermochemicalinterfacialpolarizationheterogeneoustransferhydrogenationreactionspontaneouslysolid-liquidinterfacessolutionplaycatalystselectricalsurfacewirelesslymediaelectrochemicalprotonelectronPtliquid-phaseethylenecatalystobservechemicalLargeorientedariseviaexchangeionsand/orelectronsAlthoughintrinsicknownimportantmolecularbiologicalthermocatalysisremainsunclearemployedtypicallydisconnectedexternalcircuitmakesdifficultmonitorcontroldegreeaddressknowledgegapdevelopinggeneralmethodsmonitoringcontrollingconductivedispersedliquidcombiningspectroscopicmeasurementsdemonstratecontrollablypolarizesurfacesemployPt/Cproberatenonpolarsignificantlyinfluencedgeneratedwaterorganometallicredoxbufferspolaraprotic-difluorobenzenesolventAcrossvastlydisparatequantitativelysimilarscalingratesopen-circuitpotentialresultsisolateelectrostaticeffectsmedium-specificinteractionsestablishcriticalConsequently-agenerallyoverlookedparametercatalysis-warrantsconsiderationmechanisticstudiesreactionsalongsidefactorstemperaturereactantactivitiesstructureIndeedworkestablishesexperimentalconceptualfoundationharnessingelucidatechemistrymanipulatepreparativeSpontaneousElectricFieldsPlayKeyRoleThermochemicalCatalysisMetal-LiquidInterfaces

Similar Articles

Cited By