Therapeutic potential of phytoconstituents of edible fruits in combating emerging viral infections.

Veerasamy Pushparaj Santhi, Poomaruthai Masilamani, Venkatraman Sriramavaratharajan, Ramar Murugan, Shailendra S Gurav, Veerasamy Pushparaj Sarasu, Subbaiyan Parthiban, Muniappan Ayyanar
Author Information
  1. Veerasamy Pushparaj Santhi: Department of Fruit Science, Horticultural College and Research Institute for Women, Tamil Nadu Agricultural University, Tiruchirappalli, India.
  2. Poomaruthai Masilamani: Department of Fruit Science, Horticultural College and Research Institute for Women, Tamil Nadu Agricultural University, Tiruchirappalli, India.
  3. Venkatraman Sriramavaratharajan: Virchow Biotech Private Limited, Hyderabad, India.
  4. Ramar Murugan: Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, India.
  5. Shailendra S Gurav: Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, Goa University, Panaji, India.
  6. Veerasamy Pushparaj Sarasu: Department of Clinical Microbiology, Government Medical College, Pudukkottai, India.
  7. Subbaiyan Parthiban: Department of Fruit Science, Horticultural College and Research Institute for Women, Tamil Nadu Agricultural University, Tiruchirappalli, India.
  8. Muniappan Ayyanar: Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Bharathidasan University, Thanjavur, India. ORCID

Abstract

Plant-derived bioactive molecules display potential antiviral activity against various viral targets including mode of viral entry and its replication in host cells. Considering the challenges and search for antiviral agents, this review provides substantiated data on chemical constituents of edible fruits with promising antiviral activity. The bioactive constituents like naringenin, mangiferin, α-mangostin, geraniin, punicalagin, and lectins of edible fruits exhibit antiviral effect by inhibiting viral replication against IFV, DENV, polio, CHIKV, Zika, HIV, HSV, HBV, HCV, and SARS-CoV. The significance of edible fruit phytochemicals to block the virulence of various deadly viruses through their inhibitory action against the entry and replication of viral genetic makeup and proteins are discussed. In view of the antiviral property of active constituents of edible fruits which can strengthen the immune system and reduce oxidative stress, they are suggested to be diet supplements to combat various viral diseases including COVID-19. PRACTICAL APPLICATIONS: Considering the increasing threat of COVID-19, it is suggested to examine the therapeutic efficacy of existing antiviral molecules of edible fruits which may provide prophylactic and adjuvant therapy with their potential antioxidant, anti-inflammatory, and immune-modulatory effects. Several active molecules like geraniin, naringenin, (2R,4R)-1,2,4-trihydroxyheptadec-16-one, betacyanins, mangiferin, punicalagin, isomangiferin, procyanidin B2, quercetin, marmelide, jacalin lectin, banana lectin, and α-mangostin isolated from various edible fruits have showed promising antiviral properties against different pathogenic viruses. Especially flavonoid compounds extracted from edible fruits possess potential antiviral activity against a wide array of viruses like HIV-1, HSV-1 and 2, HCV, INF, dengue, yellow fever, NSV, and Zika virus infection. Hence taking such fruits or edible fruits and their constituents/compounds as dietary supplements could deliver adequate plasma levels in the body to optimize the cell and tissue levels and could lead to possible benefits for the preventive measures for this pandemic COVID-19 situation.

Keywords

References

  1. Int J Infect Dis. 2020 Apr;93:268-276 [PMID: 32081774]
  2. Eur J Clin Nutr. 2002 Aug;56 Suppl 3:S29-33 [PMID: 12142958]
  3. Science. 2010 Jun 18;328(5985):1529 [PMID: 20558710]
  4. Adv Nutr. 2013 May 01;4(3):384S-92S [PMID: 23674808]
  5. Crit Rev Food Sci Nutr. 2020 May 28;:1-19 [PMID: 32462898]
  6. Biol Pharm Bull. 2003 Jan;26(1):108-9 [PMID: 12520185]
  7. Phytother Res. 2020 Apr;34(4):742-768 [PMID: 31858645]
  8. J Biol Chem. 2010 Mar 19;285(12):8646-55 [PMID: 20080975]
  9. Drug Deliv Transl Res. 2020 Apr;10(2):354-367 [PMID: 31788762]
  10. Emerg Microbes Infect. 2020 Dec;9(1):727-732 [PMID: 32196410]
  11. Phytomedicine. 2009 Dec;16(12):1127-36 [PMID: 19586764]
  12. Sci Rep. 2019 Jan 23;9(1):423 [PMID: 30674997]
  13. N Engl J Med. 2011 Apr 21;364(16):1523-32 [PMID: 21410387]
  14. Access Microbiol. 2019 Oct 31;2(1):acmi000073 [PMID: 33062932]
  15. Phytother Res. 2020 Nov;34(11):2911-2920 [PMID: 32430996]
  16. Phytother Res. 2020 Oct;34(10):2471-2492 [PMID: 32248575]
  17. J Food Biochem. 2021 Jul 8;:e13851 [PMID: 34236082]
  18. Phytother Res. 2020 Dec;34(12):3137-3147 [PMID: 32613637]
  19. J Med Virol. 2020 Apr;92(4):399-400 [PMID: 31967329]
  20. Cell. 2020 Apr 16;181(2):281-292.e6 [PMID: 32155444]
  21. J Ethnopharmacol. 2007 Apr 4;110(3):555-8 [PMID: 17113739]
  22. Molecules. 2018 Sep 09;23(9): [PMID: 30205592]
  23. Planta Med. 1996 Aug;62(4):381-2 [PMID: 8792678]
  24. Biomed Pharmacother. 2020 Sep;129:110493 [PMID: 32768971]
  25. Antiviral Res. 2003 Apr;58(2):175-86 [PMID: 12742578]
  26. Acta Pharm Sin B. 2020 Jul;10(7):1163-1174 [PMID: 32834947]
  27. Lancet Infect Dis. 2020 May;20(5):e102-e107 [PMID: 32145768]
  28. Antiviral Res. 2007 Sep;75(3):179-87 [PMID: 17428553]
  29. J Biomol Struct Dyn. 2021 Aug;39(13):4686-4700 [PMID: 32552462]
  30. J Biomol Struct Dyn. 2021 Aug;39(12):4510-4521 [PMID: 32568012]
  31. World J Gastroenterol. 2018 Apr 28;24(16):1679-1707 [PMID: 29713125]
  32. Virol J. 2021 Feb 28;18(1):47 [PMID: 33639977]
  33. J Med Virol. 2020 May;92(5):491-494 [PMID: 32056249]
  34. Pharmacol Ther. 2020 Oct;214:107613 [PMID: 32562826]
  35. Lancet. 2016 Jan 23;387(10016):335-336 [PMID: 26777915]
  36. Arch Virol. 2019 Aug;164(8):1981-1996 [PMID: 31139937]
  37. Mol Cell Biochem. 2021 Jun;476(6):2345-2364 [PMID: 33587232]
  38. Antioxidants (Basel). 2020 Aug 13;9(8): [PMID: 32823497]
  39. Biol Pharm Bull. 2008 Mar;31(3):511-5 [PMID: 18310920]
  40. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5848-53 [PMID: 17376867]
  41. Jpn J Infect Dis. 2000 Aug;53(4):156-61 [PMID: 11056557]
  42. Microb Pathog. 2018 May;118:301-309 [PMID: 29604421]
  43. Phytomedicine. 2012 Dec 15;20(1):67-70 [PMID: 23146421]
  44. J Commun Dis. 2002 Jun;34(2):88-99 [PMID: 14768825]
  45. Virus Res. 2020 Jul 15;284:197989 [PMID: 32360300]
  46. Pharmacol Ther. 2009 Jul;123(1):37-53 [PMID: 19375453]
  47. Science. 2000 May 26;288(5470):1432-5 [PMID: 10827955]
  48. Biomed Res Int. 2018 May 8;2018:3750646 [PMID: 29854749]
  49. J Agric Food Chem. 2007 Feb 21;55(4):1491-500 [PMID: 17243704]
  50. J Food Biochem. 2021 Jan;45(1):e13557 [PMID: 33171544]
  51. Annu Rev Pathol. 2017 Jan 24;12:387-418 [PMID: 27959626]
  52. Food Nutr Res. 2017 Mar 22;61(1):1296675 [PMID: 28469541]
  53. Front Immunol. 2020 Oct 07;11:570122 [PMID: 33117359]
  54. Antiviral Res. 2017 Jun;142:37-54 [PMID: 28322922]
  55. Chemotherapy. 1996 Nov-Dec;42(6):443-51 [PMID: 8957579]
  56. Sci Rep. 2017 Feb 03;7:41864 [PMID: 28157234]
  57. Nature. 2003 May 15;423(6937):240 [PMID: 12748632]
  58. Zhongguo Yao Li Xue Bao. 1993 Sep;14(5):452-4 [PMID: 8010041]
  59. Hepatology. 2008 May;47(5):1437-45 [PMID: 18393287]
  60. Virus Res. 2017 Aug 15;240:180-189 [PMID: 28864423]
  61. RSC Adv. 2020 May 27;10(34):19790-19802 [PMID: 35685913]
  62. Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2122-2132 [PMID: 31932446]
  63. Pharm Biol. 2017 Dec;55(1):1317-1323 [PMID: 28283004]
  64. PLoS One. 2017 Jun 30;12(6):e0179291 [PMID: 28665969]
  65. Phytomedicine. 2021 May;85:153361 [PMID: 33485605]
  66. Nat Prod Res. 2016;30(4):464-8 [PMID: 25774442]
  67. Chin Med J (Engl). 1990 Feb;103(2):160-5 [PMID: 2167819]
  68. Eur J Immunol. 1993 Jan;23(1):179-85 [PMID: 8419169]
  69. Virol J. 2017 Nov 21;14(1):229 [PMID: 29162124]
  70. J Food Sci. 2013 Sep;78(9):M1412-5 [PMID: 23931146]
  71. Cell Mol Immunol. 2020 May;17(5):555-557 [PMID: 32235915]
  72. Cell. 2015 Oct 22;163(3):746-58 [PMID: 26496612]
  73. Sci Rep. 2019 Nov 8;9(1):16348 [PMID: 31705028]
  74. Antiviral Res. 2016 Oct;134:97-107 [PMID: 27591143]
  75. Molecules. 2015 Jan 06;20(1):648-68 [PMID: 25569520]
  76. Lancet. 2015 Sep 5;386(9997):995-1007 [PMID: 26049252]
  77. SAGE Open Med. 2021 Feb 01;9:2050312121991246 [PMID: 33614035]
  78. BMC Complement Altern Med. 2009 Nov 23;9:47 [PMID: 19930633]
  79. Front Med (Lausanne). 2020 Aug 07;7:444 [PMID: 32850918]
  80. Nat Prod Bioprospect. 2019 Oct;9(5):345-349 [PMID: 31538308]
  81. Bull Acad Natl Med. 2007 Nov;191(8):1563-77 [PMID: 18666456]
  82. Bioorg Med Chem Lett. 2012 Mar 15;22(6):2209-11 [PMID: 22342145]
  83. J Agric Food Chem. 2002 Dec 4;50(25):7449-54 [PMID: 12452674]
  84. Molecules. 2011 May 24;16(5):4264-77 [PMID: 21610656]
  85. J Hepatol. 2011 Nov;55(5):963-71 [PMID: 21354229]

Grants

  1. EMR/2016/007164/Science and Engineering Research Board

Word Cloud

Created with Highcharts 10.0.0ediblefruitsantiviralviralpotentialvariousreplicationCOVID-19moleculesactivityconstituentslikevirusesbioactiveincludingentryConsideringpromisingnaringeninmangiferinα-mangostingeraniinpunicalaginZikaHCVphytochemicalsactivesuggestedsupplements2lectinlevelsPlant-deriveddisplaytargetsmodehostcellschallengessearchagentsreviewprovidessubstantiateddatachemicallectinsexhibiteffectinhibitingIFVDENVpolioCHIKVHIVHSVHBVSARS-CoVsignificancefruitblockvirulencedeadlyinhibitoryactiongeneticmakeupproteinsdiscussedviewpropertycanstrengthenimmunesystemreduceoxidativestressdietcombatdiseasesPRACTICALAPPLICATIONS:increasingthreatexaminetherapeuticefficacyexistingmayprovideprophylacticadjuvanttherapyantioxidantanti-inflammatoryimmune-modulatoryeffectsSeveral2R4R-14-trihydroxyheptadec-16-onebetacyaninsisomangiferinprocyanidinB2quercetinmarmelidejacalinbananaisolatedshowedpropertiesdifferentpathogenicEspeciallyflavonoidcompoundsextractedpossesswidearrayHIV-1HSV-1INFdengueyellowfeverNSVvirusinfectionHencetakingconstituents/compoundsdietarydeliveradequateplasmabodyoptimizecelltissueleadpossiblebenefitspreventivemeasurespandemicsituationTherapeuticphytoconstituentscombatingemerginginfectionsimmune-modulatorstherapeutics

Similar Articles

Cited By (14)