Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility.

Janis Koester, Yekaterina A Miroshnikova, Sushmita Ghatak, Carlos Andrés Chacón-Martínez, Jessica Morgner, Xinping Li, Ilian Atanassov, Janine Altmüller, David E Birk, Manuel Koch, Wilhelm Bloch, Michaela Bartusel, Carien M Niessen, Alvaro Rada-Iglesias, Sara A Wickström
Author Information
  1. Janis Koester: Max Planck Institute for Biology of Ageing, Cologne, Germany. ORCID
  2. Yekaterina A Miroshnikova: Max Planck Institute for Biology of Ageing, Cologne, Germany.
  3. Sushmita Ghatak: Max Planck Institute for Biology of Ageing, Cologne, Germany.
  4. Carlos Andrés Chacón-Martínez: Max Planck Institute for Biology of Ageing, Cologne, Germany.
  5. Jessica Morgner: Max Planck Institute for Biology of Ageing, Cologne, Germany. ORCID
  6. Xinping Li: Max Planck Institute for Biology of Ageing, Cologne, Germany. ORCID
  7. Ilian Atanassov: Max Planck Institute for Biology of Ageing, Cologne, Germany. ORCID
  8. Janine Altmüller: Cologne Center for Genomics, University of Cologne, Cologne, Germany.
  9. David E Birk: Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
  10. Manuel Koch: Institute for Dental Research and Oral Musculoskeletal Research, Center for Biochemistry, University of Cologne, Cologne, Germany. ORCID
  11. Wilhelm Bloch: Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
  12. Michaela Bartusel: Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. ORCID
  13. Carien M Niessen: Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), University of Cologne, Cologne, Germany.
  14. Alvaro Rada-Iglesias: Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), University of Cologne, Cologne, Germany. ORCID
  15. Sara A Wickström: Max Planck Institute for Biology of Ageing, Cologne, Germany. sara.wickstrom@helsinki.fi. ORCID

Abstract

Tissue turnover requires activation and lineage commitment of tissue-resident stem cells (SCs). These processes are impacted by ageing, but the mechanisms remain unclear. Here, we addressed the mechanisms of ageing in murine hair follicle SCs (HFSCs) and observed a widespread reduction in chromatin accessibility in aged HFSCs, particularly at key self-renewal and differentiation genes, characterized by bivalent promoters occupied by active and repressive chromatin marks. Consistent with this, aged HFSCs showed reduced ability to activate bivalent genes for efficient self-renewal and differentiation. These defects were niche dependent as the transplantation of aged HFSCs into young recipients or synthetic niches restored SC functions. Mechanistically, the aged HFSC niche displayed widespread alterations in extracellular matrix composition and mechanics, resulting in mechanical stress and concomitant transcriptional repression to silence promoters. As a consequence, increasing basement membrane stiffness recapitulated age-related SC changes. These data identify niche mechanics as a central regulator of chromatin state, which, when altered, leads to age-dependent SC exhaustion.

References

  1. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). [PMID: 23746838]
  2. Signer, R. A. & Morrison, S. J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12, 152–165 (2013). [PMID: 23395443]
  3. Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013). [PMID: 23788621]
  4. Harikumar, A. & Meshorer, E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep. 16, 1609–1619 (2015). [PMID: 26553936]
  5. Hsu, Y. C., Li, L. & Fuchs, E. Emerging interactions between skin stem cells and their niches. Nat. Med. 20, 847–856 (2014). [PMID: 25100530]
  6. Doles, J., Storer, M., Cozzuto, L., Roma, G. & Keyes, W. M. Age-associated inflammation inhibits epidermal stem cell function. Genes Dev. 26, 2144–2153 (2012). [PMID: 22972935]
  7. Giangreco, A., Qin, M., Pintar, J. E. & Watt, F. M. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 7, 250–259 (2008). [PMID: 18221414]
  8. Keyes, B. E. et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc. Natl Acad. Sci. USA 110, E4950-9 (2013). [PMID: 24282298]
  9. Matsumura, H. et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016). [PMID: 26912707]
  10. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). [PMID: 24097267]
  11. Saha, P. & Mishra, R. K. Heterochromatic hues of transcription—the diverse roles of noncoding transcripts from constitutive heterochromatin. FEBS J. 286, 4626–4641 (2019). [PMID: 31644838]
  12. Brunet, A. & Rando, T. A. Interaction between epigenetic and metabolism in aging stem cells. Curr. Opin. Cell Biol. 45, 1–7 (2017). [PMID: 28129586]
  13. Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020). [PMID: 32094197]
  14. Lien, W. H. et al. Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 9, 219–232 (2011). [PMID: 21885018]
  15. Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differ. Res. Biol. diversity 72, 548–557 (2004). [DOI: 10.1111/j.1432-0436.2004.07209008.x]
  16. Muller-Rover, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3–15 (2001). [PMID: 11442744]
  17. Chacon-Martinez, C. A., Klose, M., Niemann, C., Glauche, I. & Wickstrom, S. A. Hair follicle stem cell cultures reveal self-organizing plasticity of stem cells and their progeny. EMBO J. 36, 151–164 (2017). [PMID: 27940653]
  18. Hsu, Y. C., Li, L. & Fuchs, E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157, 935–949 (2014). [PMID: 24813615]
  19. Ansorge, H. L. et al. Type XIV collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice. J. Biol. Chem. 284, 8427–8438 (2009). [PMID: 19136672]
  20. Bradshaw, A. D. et al. SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J. Invest. Dermatol. 120, 949–955 (2003). [PMID: 12787119]
  21. Guimaraes, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020). [DOI: 10.1038/s41578-019-0169-1]
  22. Langton, A. K., Graham, H. K., Griffiths, C. E. M. & Watson, R. E. B. Ageing significantly impacts the biomechanical function and structural composition of skin. Exp. Dermatol. 28, 981–984 (2019). [PMID: 31152614]
  23. Mao, J. R. et al. Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nat. Genet. 30, 421–425 (2002). [PMID: 11925569]
  24. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16, 486–498 (2015). [PMID: 26130009]
  25. Le, H. Q. et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell Biol. 18, 864–875 (2016). [PMID: 27398909]
  26. Vinogradova, M. et al. An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat. Chem. Biol. 12, 531–538 (2016). [PMID: 27214401]
  27. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005). [PMID: 15716955]
  28. Nishiguchi, M. A., Spencer, C. A., Leung, D. H. & Leung, T. H. Aging suppresses skin-derived circulating SDF1 to promote full-thickness tissue regeneration. Cell Rep. 24, 3383–3392 (2018). [PMID: 30257200]
  29. Sarbacher, C. A. & Halper, J. T. Connective tissue and age-related diseases. Subcell. Biochem. 91, 281–310 (2019). [PMID: 30888657]
  30. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019). [PMID: 31413369]
  31. Marinkovich, M. P., Lunstrum, G. P. & Burgeson, R. E. The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J. Biol. Chem. 267, 17900–17906 (1992). [PMID: 1517226]
  32. Sorokin, L. M. et al. Laminin α4 and integrin α6 are upregulated in regenerating dy/dy skeletal muscle: comparative expression of laminin and integrin isoforms in muscles regenerating after crush injury. Exp. Cell Res. 256, 500–514 (2000). [PMID: 10772822]
  33. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). [DOI: 10.1038/nmeth.2019]
  34. Liang, Y. et al. A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials 32, 9308–9315 (2011). [PMID: 21911252]
  35. Dodt, M., Roehr, J. T., Ahmed, R. & Dieterich, C. FLEXBAR-flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1, 895–905 (2012). [PMID: 24832523]
  36. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
  37. Allhoff, M., Sere, K., J, F. P., Zenke, M. & I, G. C. Differential peak calling of ChIP-seq signals with replicates with THOR. Nucleic Acids Res. 44, e153 (2016). [PMID: 27484474]
  38. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016). [PMID: 27079975]
  39. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011). [PMID: 21221095]
  40. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). [PMID: 20513432]
  41. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019). [PMID: 30944313]
  42. Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015). [PMID: 25765347]
  43. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). [PMID: 23104886]
  44. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). [PMID: 24227677]
  45. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). [PMID: 25516281]
  46. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). [PMID: 18798982]
  47. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012). [PMID: 22217937]
  48. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003). [PMID: 12585499]
  49. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). [PMID: 19029910]
  50. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). [PMID: 25605792]
  51. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019). [PMID: 30395289]

MeSH Term

Animals
Cell Differentiation
Cell Lineage
Cell Self Renewal
Cells, Cultured
Cellular Senescence
Chromatin Assembly and Disassembly
Extracellular Matrix
Gene Silencing
Hair Follicle
Male
Mechanotransduction, Cellular
Mice, Inbred C57BL
Mice, Knockout
Promoter Regions, Genetic
Skin Aging
Stem Cell Niche
Stem Cells
Stress, Mechanical
Transcription, Genetic
Mice

Word Cloud

Created with Highcharts 10.0.0HFSCsagedageingchromatinbivalentnicheSCstemSCsmechanismshairfolliclewidespreadaccessibilityself-renewaldifferentiationgenespromotersmechanicsTissueturnoverrequiresactivationlineagecommitmenttissue-residentcellsprocessesimpactedremainunclearaddressedmurineobservedreductionparticularlykeycharacterizedoccupiedactiverepressivemarksConsistentshowedreducedabilityactivateefficientdefectsdependenttransplantationyoungrecipientssyntheticnichesrestoredfunctionsMechanisticallyHFSCdisplayedalterationsextracellularmatrixcompositionresultingmechanicalstressconcomitanttranscriptionalrepressionsilenceconsequenceincreasingbasementmembranestiffnessrecapitulatedage-relatedchangesdataidentifycentralregulatorstatealteredleadsage-dependentexhaustionNichestiffeningcompromisescellpotentialreducingpromoter

Similar Articles

Cited By