Global mapping of cancers: The Cancer Genome Atlas and beyond.

Carlo Ganini, Ivano Amelio, Riccardo Bertolo, Pierluigi Bove, Oreste Claudio Buonomo, Eleonora Candi, Chiara Cipriani, Nicola Di Daniele, Hartmut Juhl, Alessandro Mauriello, Carla Marani, John Marshall, Sonia Melino, Paolo Marchetti, Manuela Montanaro, Maria Emanuela Natale, Flavia Novelli, Giampiero Palmieri, Mauro Piacentini, Erino Angelo Rendina, Mario Roselli, Giuseppe Sica, Manfredi Tesauro, Valentina Rovella, Giuseppe Tisone, Yufang Shi, Ying Wang, Gerry Melino
Author Information
  1. Carlo Ganini: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy. ORCID
  2. Ivano Amelio: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy. ORCID
  3. Riccardo Bertolo: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  4. Pierluigi Bove: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  5. Oreste Claudio Buonomo: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  6. Eleonora Candi: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  7. Chiara Cipriani: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  8. Nicola Di Daniele: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  9. Hartmut Juhl: Indivumed GmbH, Hamburg, Germany.
  10. Alessandro Mauriello: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  11. Carla Marani: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  12. John Marshall: Medstar Georgetown University Hospital, Georgetown University, Washington, DC, USA.
  13. Sonia Melino: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  14. Paolo Marchetti: Sant'Andrea Hospital, University of Rome Sapienza, Italy.
  15. Manuela Montanaro: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  16. Maria Emanuela Natale: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  17. Flavia Novelli: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  18. Giampiero Palmieri: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  19. Mauro Piacentini: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  20. Erino Angelo Rendina: Sant'Andrea Hospital, University of Rome Sapienza, Italy.
  21. Mario Roselli: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  22. Giuseppe Sica: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  23. Manfredi Tesauro: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  24. Valentina Rovella: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  25. Giuseppe Tisone: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  26. Yufang Shi: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.
  27. Ying Wang: CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  28. Gerry Melino: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, Italy.

Abstract

Cancer genomes have been explored from the early 2000s through massive exome sequencing efforts, leading to the publication of The Cancer Genome Atlas in 2013. Sequencing techniques have been developed alongside this project and have allowed scientists to bypass the limitation of costs for whole-genome sequencing (WGS) of single specimens by developing more accurate and extensive cancer sequencing projects, such as deep sequencing of whole genomes and transcriptomic analysis. The Pan-Cancer Analysis of Whole Genomes recently published WGS data from more than 2600 human cancers together with almost 1200 related transcriptomes. The application of WGS on a large database allowed, for the first time in history, a global analysis of features such as molecular signatures, large structural variations and noncoding regions of the genome, as well as the evaluation of RNA alterations in the absence of underlying DNA mutations. The vast amount of data generated still needs to be thoroughly deciphered, and the advent of machine-learning approaches will be the next step towards the generation of personalized approaches for cancer medicine. The present manuscript wants to give a broad perspective on some of the biological evidence derived from the largest sequencing attempts on human cancers so far, discussing advantages and limitations of this approach and its power in the era of machine learning.

Keywords

References

  1. Cell Death Discov. 2020 Mar 23;6:16 [PMID: 32218993]
  2. Biol Direct. 2020 Nov 23;15(1):26 [PMID: 33225949]
  3. Cell Death Differ. 2021 Mar;28(3):1062-1075 [PMID: 33082515]
  4. Nature. 2020 Feb;578(7793):122-128 [PMID: 32025013]
  5. Bioinformatics. 2012 Sep 15;28(18):i333-i339 [PMID: 22962449]
  6. Biol Direct. 2020 Nov 19;15(1):25 [PMID: 33213502]
  7. Cell Cycle. 2010 Jan 15;9(2):256-9 [PMID: 20023379]
  8. Mol Oncol. 2019 Apr;13(4):701-724 [PMID: 30444046]
  9. Cancers (Basel). 2020 Jun 19;12(6): [PMID: 32575418]
  10. PLoS One. 2014 Mar 06;9(6):e90764 [PMID: 24603559]
  11. Horm Cancer. 2019 Jun;10(2-3):97-106 [PMID: 30903583]
  12. Cell Death Dis. 2019 Jul 15;10(8):540 [PMID: 31308358]
  13. BMC Med. 2018 Oct 2;16(1):166 [PMID: 30285732]
  14. Nat Biotechnol. 2017 Oct 11;35(10):908-911 [PMID: 29020005]
  15. Biol Direct. 2019 May 9;14(1):10 [PMID: 31072345]
  16. N Engl J Med. 2015 Nov 5;373(19):1803-13 [PMID: 26406148]
  17. Cell Death Differ. 2019 Sep;26(9):1566-1581 [PMID: 30413783]
  18. Cell Death Differ. 2020 Sep;27(9):2635-2650 [PMID: 32203170]
  19. Nature. 2020 Feb;578(7793):112-121 [PMID: 32025012]
  20. Cell Death Differ. 2019 Dec;26(12):2682-2694 [PMID: 30976095]
  21. Horm Cancer. 2019 Jun;10(2-3):128-135 [PMID: 31093954]
  22. Mol Cell. 2006 Jun 23;22(6):719-729 [PMID: 16793542]
  23. Cell Death Dis. 2020 Sep 24;11(9):800 [PMID: 32973162]
  24. Cell Death Dis. 2020 Dec 2;11(12):1030 [PMID: 33268822]
  25. Cell Death Dis. 2020 Nov 15;11(11):980 [PMID: 33191398]
  26. Mol Oncol. 2020 Sep;14(9):2069-2080 [PMID: 32580248]
  27. Curr Protoc Hum Genet. 2020 Sep;107(1):e103 [PMID: 32813322]
  28. Cell Death Differ. 2020 Feb;27(2):405-419 [PMID: 31907390]
  29. BMC Med Genomics. 2019 May 30;12(1):78 [PMID: 31146747]
  30. Nat Genet. 2020 Mar;52(3):320-330 [PMID: 32025001]
  31. Biol Direct. 2020 Nov 23;15(1):27 [PMID: 33225966]
  32. Biol Direct. 2020 Oct 6;15(1):15 [PMID: 33023641]
  33. Cancer Cell. 2010 Jan 19;17(1):98-110 [PMID: 20129251]
  34. Mucosal Immunol. 2011 Mar;4(2):239-44 [PMID: 20944558]
  35. Sci Rep. 2020 Sep 2;10(1):14453 [PMID: 32879328]
  36. Biol Direct. 2019 Sep 3;14(1):17 [PMID: 31481097]
  37. Langenbecks Arch Surg. 2019 Nov;404(7):841-851 [PMID: 31760472]
  38. Cell Death Discov. 2020 Mar 12;6:13 [PMID: 32194993]
  39. Cell. 2012 Jul 20;150(2):264-78 [PMID: 22817890]
  40. Horm Cancer. 2019 Dec;10(4-6):177-189 [PMID: 31713780]
  41. Mol Oncol. 2019 Nov;13(11):2406-2421 [PMID: 31461552]
  42. Nat Commun. 2020 May 4;11(1):2189 [PMID: 32366847]
  43. Lancet Oncol. 2015 Apr;16(4):375-84 [PMID: 25795410]
  44. Biol Direct. 2019 Aug 1;14(1):12 [PMID: 31370905]
  45. Nature. 2017 Jul 13;547(7662):217-221 [PMID: 28678778]
  46. Cell Death Discov. 2019 Mar 25;5:81 [PMID: 30937183]
  47. Cell Death Differ. 2019 Sep;26(9):1750-1765 [PMID: 30518908]
  48. FEBS J. 2012 Jan;279(1):154-67 [PMID: 22035263]
  49. Biol Direct. 2020 Jun 15;15(1):10 [PMID: 32539851]
  50. Cell. 2018 Sep 6;174(6):1347-1360 [PMID: 30193109]
  51. Macromol Biosci. 2016 Jun;16(6):847-58 [PMID: 26857526]
  52. Cell Death Discov. 2020 Oct 14;6:104 [PMID: 33083024]
  53. Biol Direct. 2020 Oct 14;15(1):18 [PMID: 33054808]
  54. N Engl J Med. 2012 Mar 8;366(10):883-892 [PMID: 22397650]
  55. Biol Direct. 2020 Jan 15;15(1):1 [PMID: 31941542]
  56. Cell. 2018 Apr 5;173(2):305-320.e10 [PMID: 29625049]
  57. N Engl J Med. 2015 Jan 22;372(4):320-30 [PMID: 25399552]
  58. Exp Mol Pathol. 2020 Feb;112:104360 [PMID: 31843580]
  59. Biol Direct. 2019 Aug 16;14(1):13 [PMID: 31420049]
  60. Nat Commun. 2020 Feb 5;11(1):736 [PMID: 32024823]
  61. Bioinformatics. 2015 Nov 15;31(22):3673-5 [PMID: 26163694]
  62. Med Oncol. 2014 Sep;31(9):166 [PMID: 25148896]
  63. Biol Direct. 2020 Dec 10;15(1):29 [PMID: 33302990]
  64. Biol Direct. 2019 Aug 23;14(1):16 [PMID: 31443736]
  65. Nature. 2017 Mar 16;543(7645):378-384 [PMID: 28112728]
  66. Mol Oncol. 2019 Aug;13(8):1725-1743 [PMID: 31116490]
  67. Nature. 2020 Feb;578(7793):82-93 [PMID: 32025007]
  68. Cell Death Dis. 2020 Nov 21;11(11):998 [PMID: 33221817]
  69. Nat Commun. 2020 Jul 7;11(1):3400 [PMID: 32636365]
  70. Gene. 2021 Jan 5;764:145105 [PMID: 32882333]
  71. Cell Death Differ. 2019 Jan;26(1):115-129 [PMID: 30341424]
  72. Carcinogenesis. 2010 Feb;31(2):208-15 [PMID: 19926640]
  73. Arch Biochem Biophys. 2000 Jan 15;373(2):435-41 [PMID: 10620369]
  74. Cell Cycle. 2019 Sep;18(17):2124-2140 [PMID: 31291818]
  75. Nature. 2014 Sep 11;513(7517):202-9 [PMID: 25079317]
  76. Genet Epidemiol. 2020 Nov;44(8):825-840 [PMID: 32783248]
  77. Biol Direct. 2019 Feb 13;14(1):4 [PMID: 30760313]
  78. Biochem Biophys Res Commun. 2010 Oct 29;401(4):568-73 [PMID: 20888799]
  79. Cell Death Differ. 2019 Mar;26(4):728-740 [PMID: 29899379]
  80. Nature. 2020 Feb;578(7793):129-136 [PMID: 32025019]
  81. Mol Oncol. 2019 Mar;13(3):535-542 [PMID: 30561127]
  82. Cell. 2017 Jul 27;170(3):534-547.e23 [PMID: 28753428]
  83. Oncotarget. 2016 Dec 20;7(51):84338-84358 [PMID: 27741519]
  84. Nat Genet. 2020 Mar;52(3):331-341 [PMID: 32025003]
  85. Cell Death Discov. 2020 Mar 30;6:18 [PMID: 32257390]
  86. Br J Cancer. 2010 Jan 19;102(2):419-27 [PMID: 20051947]
  87. Nature. 2018 Mar 15;555(7696):371-376 [PMID: 29489755]
  88. Int J Immunopathol Pharmacol. 2005 Jan-Mar;18(1):95-112 [PMID: 15698515]
  89. Mol Oncol. 2019 Jul;13(7):1490-1502 [PMID: 30973670]
  90. Cell Death Differ. 2020 Nov;27(11):3162-3176 [PMID: 32494026]
  91. Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15846-15851 [PMID: 32561648]
  92. Nature. 2020 Feb;578(7793):94-101 [PMID: 32025018]
  93. Nat Rev Cancer. 2020 Jun;20(6):343-354 [PMID: 32341552]
  94. Cell Death Differ. 2019 Mar;26(3):409-425 [PMID: 29786075]
  95. Horm Cancer. 2020 Feb;11(1):17-33 [PMID: 31858384]
  96. Mol Oncol. 2020 Jun;14(6):1170-1184 [PMID: 32255255]
  97. Cell Death Differ. 2020 Nov;27(11):3004-3020 [PMID: 32415280]
  98. Science. 2017 Oct 13;358(6360):234-238 [PMID: 28912133]
  99. Horm Cancer. 2020 Feb;11(1):1-12 [PMID: 32016820]
  100. Nature. 2019 Nov;575(7781):210-216 [PMID: 31645765]
  101. Nature. 2020 Feb;578(7793):39-40 [PMID: 32025004]
  102. Int J Mol Sci. 2019 Dec 11;20(24): [PMID: 31835684]
  103. Mol Oncol. 2020 Jul;14(7):1500-1513 [PMID: 32124546]
  104. Cell Death Differ. 2019 Mar;26(3):516-530 [PMID: 29899380]
  105. Nature. 2012 Aug 2;488(7409):116-20 [PMID: 22763441]
  106. Cell Death Differ. 2020 Sep;27(9):2697-2709 [PMID: 32447347]
  107. Nat Commun. 2017 Sep 6;8(1):465 [PMID: 28878238]
  108. Front Oncol. 2018 Oct 05;8:430 [PMID: 30345255]
  109. Biol Direct. 2019 Nov 27;14(1):23 [PMID: 31775867]
  110. Cell Death Differ. 2021 May;28(5):1477-1492 [PMID: 33257846]
  111. Cell. 2018 Apr 5;173(2):400-416.e11 [PMID: 29625055]
  112. Cell Death Discov. 2020 Apr 16;6:20 [PMID: 32337072]
  113. Oncotarget. 2017 Dec 15;9(3):3432-3445 [PMID: 29423057]
  114. Science. 2015 May 8;348(6235):666-9 [PMID: 25954003]
  115. Int J Biol Sci. 2020 Mar 5;16(9):1551-1562 [PMID: 32226301]
  116. Biol Direct. 2020 Feb 13;15(1):3 [PMID: 32054490]
  117. Nat Genet. 2015 May;47(5):505-511 [PMID: 25822088]
  118. Nat Med. 2015 Jul;21(7):751-9 [PMID: 26099045]
  119. Cancer Cell. 2020 Nov 9;38(5):734-747.e9 [PMID: 32888432]
  120. Biol Direct. 2019 Nov 21;14(1):22 [PMID: 31752974]
  121. Cell Death Differ. 2019 Mar;26(4):605-616 [PMID: 30568239]
  122. Oncol Lett. 2020 Oct;20(4):58 [PMID: 32863893]
  123. Biol Direct. 2019 Feb 26;14(1):5 [PMID: 30808378]
  124. Mol Oncol. 2019 Apr;13(4):857-872 [PMID: 30628165]
  125. Cell Death Differ. 2019 Nov;26(11):2223-2236 [PMID: 30737477]
  126. Nat Commun. 2020 Aug 6;11(1):3905 [PMID: 32764609]
  127. Science. 2015 May 8;348(6235):660-5 [PMID: 25954002]
  128. Nature. 2020 Feb;578(7793):102-111 [PMID: 32025015]
  129. Int J Mol Sci. 2019 Jun 13;20(12): [PMID: 31200461]
  130. Biol Direct. 2020 Apr 28;15(1):9 [PMID: 32345340]
  131. Nature. 2008 Oct 23;455(7216):1061-8 [PMID: 18772890]
  132. Nature. 2013 Oct 17;502(7471):333-339 [PMID: 24132290]
  133. Nature. 2001 Feb 15;409(6822):860-921 [PMID: 11237011]
  134. Curr Pathobiol Rep. 2018;6(4):265-274 [PMID: 30595971]
  135. Mol Oncol. 2020 Feb;14(2):426-446 [PMID: 31755218]
  136. Proteomics. 2021 Feb;21(3-4):e1900312 [PMID: 32875713]
  137. Cell Death Differ. 2020 May;27(5):1660-1676 [PMID: 31685978]
  138. Cell Death Differ. 2019 Jan;26(2):199-212 [PMID: 30538286]
  139. Cell Death Differ. 2020 Apr;27(4):1155-1168 [PMID: 31434979]
  140. DNA Repair (Amst). 2020 Oct;94:102905 [PMID: 32818816]
  141. N Engl J Med. 2015 Jul 9;373(2):123-35 [PMID: 26028407]
  142. Biol Direct. 2020 Jul 3;15(1):11 [PMID: 32620145]
  143. Nat Rev Cancer. 2019 Feb;19(2):97-109 [PMID: 30578414]
  144. Cell Death Dis. 2020 Nov 20;11(11):997 [PMID: 33219204]
  145. Leukemia. 2017 Oct;31(10):2057-2064 [PMID: 28260788]
  146. Nat Genet. 2020 Mar;52(3):294-305 [PMID: 32024999]
  147. Biol Direct. 2019 Apr 29;14(1):8 [PMID: 31036036]
  148. Cell Death Discov. 2020 Nov 26;6(1):131 [PMID: 33298891]
  149. Science. 2015 May 8;348(6235):648-60 [PMID: 25954001]
  150. Cell Death Discov. 2019 Jun 24;5:109 [PMID: 31263577]
  151. Cell Death Differ. 2019 Nov;26(11):2329-2343 [PMID: 30787392]
  152. Cell. 2018 Apr 5;173(2):321-337.e10 [PMID: 29625050]
  153. Genome Biol. 2020 May 28;21(1):126 [PMID: 32466770]
  154. Cell Death Differ. 2020 Mar;27(3):1008-1022 [PMID: 31320750]
  155. Biol Direct. 2019 Nov 14;14(1):21 [PMID: 31727118]
  156. Cell Syst. 2018 Oct 24;7(4):422-437.e7 [PMID: 30268436]
  157. Cell Cycle. 2012 Oct 1;11(19):3638-48 [PMID: 22935697]
  158. Lancet Oncol. 2015 Mar;16(3):257-65 [PMID: 25704439]
  159. Oncotarget. 2018 Oct 5;9(78):34794-34809 [PMID: 30410678]
  160. Cell Death Discov. 2019 Jun 24;5:108 [PMID: 31263576]
  161. Cell. 2018 Apr 5;173(2):338-354.e15 [PMID: 29625051]
  162. Cell Death Differ. 2019 Mar;26(4):690-702 [PMID: 30728463]
  163. J Immunother Cancer. 2020 Jul;8(2): [PMID: 32661119]
  164. BMC Genomics. 2020 Mar 30;21(1):270 [PMID: 32228436]
  165. Horm Cancer. 2020 Apr;11(2):63-75 [PMID: 31942683]

MeSH Term

Genome, Human
High-Throughput Nucleotide Sequencing
Humans
Mutation
Neoplasms
Exome Sequencing
Whole Genome Sequencing

Word Cloud

Created with Highcharts 10.0.0sequencingCancerWGScancergenomesGenomeAtlasallowedwhole-genomeanalysisdatahumancancerslargemolecularapproachesexploredearly2000smassiveexomeeffortsleadingpublication2013SequencingtechniquesdevelopedalongsideprojectscientistsbypasslimitationcostssinglespecimensdevelopingaccurateextensiveprojectsdeepwholetranscriptomicPan-CancerAnalysisWholeGenomesrecentlypublished2600togetheralmost1200relatedtranscriptomesapplicationdatabasefirsttimehistoryglobalfeaturessignaturesstructuralvariationsnoncodingregionsgenomewellevaluationRNAalterationsabsenceunderlyingDNAmutationsvastamountgeneratedstillneedsthoroughlydecipheredadventmachine-learningwillnextsteptowardsgenerationpersonalizedmedicinepresentmanuscriptwantsgivebroadperspectivebiologicalevidencederivedlargestattemptsfardiscussingadvantageslimitationsapproachpowereramachinelearningGlobalmappingcancers:beyondartificialintelligencesignatureomics

Similar Articles

Cited By