Profile likelihood analysis for a stochastic model of diffusion in heterogeneous media.

Matthew J Simpson, Alexander P Browning, Christopher Drovandi, Elliot J Carr, Oliver J Maclaren, Ruth E Baker
Author Information
  1. Matthew J Simpson: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia. ORCID
  2. Alexander P Browning: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
  3. Christopher Drovandi: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia. ORCID
  4. Elliot J Carr: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia. ORCID
  5. Oliver J Maclaren: Department of Engineering Science, University of Auckland, Auckland 1142, New Zealand.
  6. Ruth E Baker: Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK. ORCID

Abstract

We compute profile likelihoods for a stochastic model of diffusive transport motivated by experimental observations of heat conduction in layered skin tissues. This process is modelled as a random walk in a layered one-dimensional material, where each layer has a distinct particle hopping rate. Particles are released at some location, and the duration of time taken for each particle to reach an absorbing boundary is recorded. To explore whether these data can be used to identify the hopping rates in each layer, we compute various profile likelihoods using two methods: first, an exact likelihood is evaluated using a relatively expensive Markov chain approach; and, second, we form an approximate likelihood by assuming the distribution of exit times is given by a Gamma distribution whose first two moments match the moments from the continuum limit description of the stochastic model. Using the exact and approximate likelihoods, we construct various profile likelihoods for a range of problems. In cases where parameter values are not identifiable, we make progress by re-interpreting those data with a reduced model with a smaller number of layers.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.5450043

References

  1. Am J Physiol. 1980 Jul;239(1):R7-24 [PMID: 7396041]
  2. Bioinformatics. 2014 May 15;30(10):1440-8 [PMID: 24463185]
  3. J R Soc Interface. 2019 Jul 26;16(156):20190043 [PMID: 31266417]
  4. J Theor Biol. 2019 Jan 7;460:204-208 [PMID: 30315816]
  5. J Theor Biol. 2013 May 7;324:84-102 [PMID: 23333764]
  6. Bioinformatics. 2009 Aug 1;25(15):1923-9 [PMID: 19505944]
  7. Proc Biol Sci. 1999 Sep 7;266(1430):1743-53 [PMID: 10518323]
  8. Adv Drug Deliv Rev. 2013 Feb;65(2):251-64 [PMID: 22626979]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041135 [PMID: 22680446]
  10. J Chem Phys. 2020 Aug 21;153(7):074115 [PMID: 32828075]
  11. PLoS One. 2016 Sep 09;11(9):e0162888 [PMID: 27612153]
  12. J R Soc Interface. 2020 Mar;17(164):20200055 [PMID: 32126193]
  13. J R Soc Interface. 2020 Dec;17(173):20200652 [PMID: 33323054]
  14. J R Soc Interface. 2009 Feb 6;6(31):187-202 [PMID: 19205079]
  15. IEEE Trans Biomed Eng. 2001 Jan;48(1):55-65 [PMID: 11235592]
  16. Bull Math Biol. 2019 Mar;81(3):676-698 [PMID: 30443704]
  17. PLoS One. 2011;6(11):e27755 [PMID: 22132135]
  18. Biophys J. 2012 Dec 5;103(11):2275-86 [PMID: 23283226]
  19. Philos Trans A Math Phys Eng Sci. 2012 Dec 31;371(1984):20110544 [PMID: 23277602]
  20. Sci Rep. 2017 Sep 7;7(1):10925 [PMID: 28883527]
  21. Math Biosci. 2013 Dec;246(2):283-92 [PMID: 23579098]
  22. Math Biosci. 2014 Oct;256:116-26 [PMID: 25173434]
  23. J Chem Phys. 2019 Jan 28;150(4):044104 [PMID: 30709257]
  24. J R Soc Interface. 2008 Aug 6;5(25):813-34 [PMID: 18426776]
  25. Adv Healthc Mater. 2013 May;2(5):667-72 [PMID: 23208618]
  26. Front Physiol. 2016 Dec 05;7:590 [PMID: 27994553]
  27. J Gen Physiol. 2014 Mar;143(3):401-16 [PMID: 24516188]
  28. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031136 [PMID: 23030895]

Word Cloud

Created with Highcharts 10.0.0modellikelihoodsstochasticprofilelikelihoodcomputelayeredrandomwalklayerparticlehoppingdatavarioususingtwofirstexactapproximatedistributionmomentsparameterdiffusivetransportmotivatedexperimentalobservationsheatconductionskintissuesprocessmodelledone-dimensionalmaterialdistinctrateParticlesreleasedlocationdurationtimetakenreachabsorbingboundaryrecordedexplorewhethercanusedidentifyratesmethods:evaluatedrelativelyexpensiveMarkovchainapproachsecondformassumingexittimesgivenGammawhosematchcontinuumlimitdescriptionUsingconstructrangeproblemscasesvaluesidentifiablemakeprogressre-interpretingreducedsmallernumberlayersProfileanalysisdiffusionheterogeneousmediaestimationuncertaintyquantification

Similar Articles

Cited By