Accumulation of Endogenous Mutant Huntingtin in Astrocytes Exacerbates Neuropathology of Huntington Disease in Mice.

Liang Jing, Siying Cheng, Yongcheng Pan, Qiong Liu, Weili Yang, Shihua Li, Xiao-Jiang Li
Author Information
  1. Liang Jing: Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hunan, China.
  2. Siying Cheng: Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
  3. Yongcheng Pan: Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
  4. Qiong Liu: Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
  5. Weili Yang: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
  6. Shihua Li: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
  7. Xiao-Jiang Li: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China. xjli33@jnu.edu.cn. ORCID

Abstract

Selective neuronal accumulation of misfolded proteins is a key step toward neurodegeneration in a wide range of neurodegenerative diseases, including Huntington's (HD) diseases. Our recent studies suggest that Hsp70-binding protein 1 (HspBP1), an Hsp70/CHIP inhibitor that reduces protein folding, is highly expressed in neuronal cells and accounts for the accumulation of the HD protein Huntingtin (HTT) in neuronal cells. To further determine the role of HspBP1 in regulation of mutant protein accumulation, we investigated whether increasing expression of HspBP1 in glial cells can also induce the accumulation of endogenous mutant HTT in glial cells and yield non-cell-autonomous toxic effects. We performed stereotaxic injection of AAV to selectively express HspBP1 in astrocytes in the brains of HD140Q knock-in (KI) Mice that express mutant HTT ubiquitously but do not display obvious neurodegeneration. However, HspBP1 expression in HD140Q astrocytes led to the increased accumulation of endogenous mutant HTT and robust neuronal loss in the striatum of HD140Q KI Mice. In transgenic HD Mice that selectively express mutant HTT in astrocytes, increased accumulation of mutant HTT in astrocytes via HspBP1 expression did not elicit neurodegeneration but could exacerbate neurological symptoms. Consistently, suppressing the expression of endogenous HspBP1 in the striatum of HD140Q KI Mice via CRISPR/Cas9 led to a significant reduction of mutant HTT accumulation. Our findings suggest that although endogenous mutant HTT in astrocytes can exacerbate neurological symptoms, it mediates neurodegeneration only when mutant HTT is also accumulated in neuronal cells.

Keywords

References

  1. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60. https://doi.org/10.1038/nrn1007 [DOI: 10.1038/nrn1007]
  2. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35–48. https://doi.org/10.1016/j.neuron.2011.06.031 [DOI: 10.1016/j.neuron.2011.06.031]
  3. Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29(1):15–32. https://doi.org/10.1016/s0896-6273(01)00177-5 [DOI: 10.1016/s0896-6273(01)00177-5]
  4. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899. https://doi.org/10.1038/nature02263 [DOI: 10.1038/nature02263]
  5. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659. https://doi.org/10.1038/ncomms6659 [DOI: 10.1038/ncomms6659]
  6. Pohl C, Dikic I (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366(6467):818–822. https://doi.org/10.1126/science.aax3769 [DOI: 10.1126/science.aax3769]
  7. Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci 11:185. https://doi.org/10.3389/fnins.2017.00185 [DOI: 10.3389/fnins.2017.00185]
  8. McClellan AJ, Frydman J (2001) Molecular chaperones and the art of recognizing a lost cause. Nat Cell Biol 3(2):E51-53. https://doi.org/10.1038/35055162 [DOI: 10.1038/35055162]
  9. McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8(4):303–308. https://doi.org/10.1379/1466-1268(2003)008%3c0303:calbtc%3e2.0.co;2 [DOI: 10.1379/1466-1268(2003)008<0303]
  10. Raynes DA, Guerriero V Jr (1998) Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J Biol Chem 273(49):32883–32888. https://doi.org/10.1074/jbc.273.49.32883 [DOI: 10.1074/jbc.273.49.32883]
  11. McLellan CA, Raynes DA, Guerriero V (2003) HspBP1, an Hsp70 cochaperone, has two structural domains and is capable of altering the conformation of the Hsp70 ATPase domain. J Biol Chem 278(21):19017–19022. https://doi.org/10.1074/jbc.M301109200 [DOI: 10.1074/jbc.M301109200]
  12. Alberti S, Bohse K, Arndt V, Schmitz A, Hohfeld J (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15(9):4003–4010. https://doi.org/10.1091/mbc.e04-04-0293 [DOI: 10.1091/mbc.e04-04-0293]
  13. Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU et al (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17(3):367–379. https://doi.org/10.1016/j.molcel.2004.12.023 [DOI: 10.1016/j.molcel.2004.12.023]
  14. Zhao T, Hong Y, Yin P, Li S, Li XJ (2017) Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A 114(37):E7803–E7811. https://doi.org/10.1073/pnas.1710549114 [DOI: 10.1073/pnas.1710549114]
  15. Bradford J, Shin J-Y, Roberts M, Wang C-E, Li X-J, Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci 106(52):22480–22485. https://doi.org/10.1073/pnas.0911503106 [DOI: 10.1073/pnas.0911503106]
  16. Wang CE, Zhou H, McGuire JR, Cerullo V, Lee B, Li SH, Li XJ (2008) Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol 181(5):803–816. https://doi.org/10.1083/jcb.200710158 [DOI: 10.1083/jcb.200710158]
  17. Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, Sun X, Qin Z et al (2017) CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 127(7):2719–2724. https://doi.org/10.1172/JCI92087 [DOI: 10.1172/JCI92087]
  18. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M et al (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19(15):3053–3067. https://doi.org/10.1093/hmg/ddq212 [DOI: 10.1093/hmg/ddq212]
  19. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I et al (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703. https://doi.org/10.1038/nn.3691 [DOI: 10.1038/nn.3691]
  20. Wood TE, Barry J, Yang Z, Cepeda C, Levine MS, Gray M (2019) Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum Mol Genet 28(3):487–500. https://doi.org/10.1093/hmg/ddy363 [DOI: 10.1093/hmg/ddy363]
  21. Hickey MA, Kosmalska A, Enayati J, Cohen R, Zeitlin S, Levine MS, Chesselet MF (2008) Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington’s disease mice. Neuroscience 157(1):280–295. https://doi.org/10.1016/j.neuroscience.2008.08.041 [DOI: 10.1016/j.neuroscience.2008.08.041]
  22. Rising AC, Xu J, Carlson A, Napoli VV, Denovan-Wright EM, Mandel RJ (2011) Longitudinal behavioral, cross-sectional transcriptional and histopathological characterization of a knock-in mouse model of Huntington’s disease with 140 CAG repeats. Exp Neurol 228(2):173–182. https://doi.org/10.1016/j.expneurol.2010.12.017 [DOI: 10.1016/j.expneurol.2010.12.017]
  23. Jang M, Lee SE, Cho IH (2018) Adeno-associated viral vector serotype DJ-mediated overexpression of N171–82Q-mutant Huntingtin in the striatum of juvenile mice is a new model for Huntington’s disease. Front Cell Neurosci 12:157. https://doi.org/10.3389/fncel.2018.00157 [DOI: 10.3389/fncel.2018.00157]
  24. Yang S, Li S, Li XJ (2018) Shortening the half-life of Cas9 maintains its gene editing ability and reduces neuronal toxicity. Cell Rep 25(10):2653-2659.e2653. https://doi.org/10.1016/j.celrep.2018.11.019 [DOI: 10.1016/j.celrep.2018.11.019]
  25. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455. https://doi.org/10.1016/j.cell.2014.09.014 [DOI: 10.1016/j.cell.2014.09.014]
  26. Yang H, Yang S, Jing L, Huang L, Chen L, Zhao X, Yang W, Pan Y et al (2020) Truncation of mutant huntingtin in knock-in mice demonstrates exon1 huntingtin is a key pathogenic form. Nat Commun 11(1):2582. https://doi.org/10.1038/s41467-020-16318-1 [DOI: 10.1038/s41467-020-16318-1]
  27. Cyr DM, Hohfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27(7):368–375. https://doi.org/10.1016/s0968-0004(02)02125-4 [DOI: 10.1016/s0968-0004(02)02125-4]
  28. Hohfeld J, Cyr DM, Patterson C (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2(10):885–890. https://doi.org/10.1093/embo-reports/kve206 [DOI: 10.1093/embo-reports/kve206]
  29. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2015) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:353–371. https://doi.org/10.1146/annurev-pharmtox-010814-124332 [DOI: 10.1146/annurev-pharmtox-010814-124332]
  30. Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A (2016) A decade of boon or burden: what has the CHIP ever done for cellular protein quality control mechanism implicated in neurodegeneration and aging? Front Mol Neurosci 9:93. https://doi.org/10.3389/fnmol.2016.00093 [DOI: 10.3389/fnmol.2016.00093]
  31. Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171(6):1001–1012. https://doi.org/10.1083/jcb.200508072 [DOI: 10.1083/jcb.200508072]
  32. Hong Y, Zhao T, Li XJ, Li S (2016) Mutant Huntingtin impairs BDNF release from astrocytes by disrupting conversion of Rab3a-GTP into Rab3a-GDP. J Neurosci 36(34):8790–8801. https://doi.org/10.1523/JNEUROSCI.0168-16.2016 [DOI: 10.1523/JNEUROSCI.0168-16.2016]
  33. Petrucelli L, Dawson TM (2004) Mechanism of neurodegenerative disease: role of the ubiquitin proteasome system. Ann Med 36(4):315–320. https://doi.org/10.1080/07853890410031948 [DOI: 10.1080/07853890410031948]
  34. Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280(12):11635–11640. https://doi.org/10.1074/jbc.M412042200 [DOI: 10.1074/jbc.M412042200]
  35. Al-Ramahi I, Lam YC, Chen HK, de Gouyon B, Zhang M, Perez AM, Branco J, de Haro M et al (2006) CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem 281(36):26714–26724. https://doi.org/10.1074/jbc.M601603200 [DOI: 10.1074/jbc.M601603200]
  36. Howarth JL, Glover CP, Uney JB (2009) HSP70 interacting protein prevents the accumulation of inclusions in polyglutamine disease. J Neurochem 108(4):945–951
  37. Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658. https://doi.org/10.1172/JCI29715 [DOI: 10.1172/JCI29715]
  38. Kumar P, Ambasta RK, Veereshwarayya V, Rosen KM, Kosik KS, Band H, Mestril R, Patterson C et al (2007) CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism. Hum Mol Genet 16(7):848–864. https://doi.org/10.1093/hmg/ddm030 [DOI: 10.1093/hmg/ddm030]
  39. Oddo S, Caccamo A, Tseng B, Cheng D, Vasilevko V, Cribbs DH, LaFerla FM (2008) Blocking Abeta42 accumulation delays the onset and progression of tau pathology via the C terminus of heat shock protein70-interacting protein: a mechanistic link between Abeta and tau pathology. J Neurosci 28(47):12163–12175. https://doi.org/10.1523/JNEUROSCI.2464-08.2008 [DOI: 10.1523/JNEUROSCI.2464-08.2008]
  40. Dimant H, Zhu L, Kibuuka LN, Fan Z, Hyman BT, McLean PJ (2014) Direct visualization of CHIP-mediated degradation of alpha-synuclein in vivo: implications for PD therapeutics. PLoS One 9(3):e92098. https://doi.org/10.1371/journal.pone.0092098 [DOI: 10.1371/journal.pone.0092098]
  41. Chen HJ, Mitchell JC, Novoselov S, Miller J, Nishimura AL, Scotter EL, Vance CA, Cheetham ME et al (2016) The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis. Brain 139(Pt 5):1417–1432. https://doi.org/10.1093/brain/aww028 [DOI: 10.1093/brain/aww028]

Grants

  1. R56 AG019206/NIA NIH HHS
  2. R56 AG019206/NIA NIH HHS

MeSH Term

Adaptor Proteins, Signal Transducing
Animals
Astrocytes
Cells, Cultured
Female
Huntingtin Protein
Huntington Disease
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mutation

Chemicals

Adaptor Proteins, Signal Transducing
HSP70-binding protein HSPBP1, mouse
Htt protein, mouse
Huntingtin Protein

Word Cloud

Created with Highcharts 10.0.0HTTmutantaccumulationHspBP1neuronalcellsastrocytesneurodegenerationproteinexpressionendogenousHD140QmiceHDexpressKIdiseasessuggestglialcanalsoselectivelyledincreasedstriatumviaexacerbateneurologicalsymptomsHuntingtonSelectivemisfoldedproteinskeysteptowardwiderangeneurodegenerativeincludingHuntington'srecentstudiesHsp70-binding1Hsp70/CHIPinhibitorreducesfoldinghighlyexpressedaccountshuntingtindetermineroleregulationinvestigatedwhetherincreasinginduceyieldnon-cell-autonomoustoxiceffectsperformedstereotaxicinjectionAAVbrainsknock-inubiquitouslydisplayobviousHoweverrobustlosstransgenicelicitConsistentlysuppressingHspBp1CRISPR/Cas9significantreductionfindingsalthoughmediatesaccumulatedAccumulationEndogenousMutantHuntingtinAstrocytesExacerbatesNeuropathologyDiseaseMiceCAGrepeatChaperonGene-targetingdiseaseAggregatesNeurodegeneration

Similar Articles

Cited By (10)