An Azo Coupling-Based Chemoproteomic Approach to Systematically Profile the Tyrosine Reactivity in the Human Proteome.

Fangxu Sun, Suttipong Suttapitugsakul, Ronghu Wu
Author Information
  1. Fangxu Sun: School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
  2. Suttipong Suttapitugsakul: School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
  3. Ronghu Wu: School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States. ORCID

Abstract

The tyrosine residue of proteins participates in a wide range of activities including enzymatic catalysis, protein-protein interaction, and protein-ligand binding. However, the functional annotation of the tyrosine residues on a large scale is still very challenging. Here, we report a novel method integrating azo coupling, bioorthogonal chemistry, and multiplexed proteomics to globally investigate the tyrosine reactivity in the human proteome. Based on the azo-coupling reaction between aryl diazonium salt and the tyrosine residue, two different probes were evaluated, and the probe with the best performance was employed to further study the tyrosine residues in the human proteome. Then, tagged tyrosine-containing peptides were selectively enriched using bioorthogonal chemistry, and after the cleavage, a small tag on the peptides perfectly fits for site-specific analysis by MS. Coupling with multiplexed proteomics, we quantified over 5000 tyrosine sites in MCF7 cells, and these quantified sites displayed a wide range of reactivity. The tyrosine residues with high reactivity were found on functionally and structurally diverse proteins, including those with the catalytic activity and binding property. This method can be extensively applied to advance our understanding of protein functions and facilitate the development of covalent drugs to regulate protein activity.

References

  1. Mol Cell Proteomics. 2013 Mar;12(3):825-31 [PMID: 23266961]
  2. Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20 [PMID: 25514926]
  3. Mass Spectrom Rev. 2021 May;40(3):215-235 [PMID: 32519381]
  4. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  5. J Biol Chem. 2016 Aug 26;291(35):18072-83 [PMID: 27402852]
  6. Org Biomol Chem. 2013 Feb 13;11(10):1582-93 [PMID: 23358692]
  7. J Am Chem Soc. 2005 Mar 23;127(11):3718-23 [PMID: 15771505]
  8. Nucleic Acids Res. 2019 Jan 8;47(D1):D559-D563 [PMID: 30357367]
  9. Nat Methods. 2007 Mar;4(3):207-14 [PMID: 17327847]
  10. Trends Biotechnol. 2017 Jul;35(7):598-609 [PMID: 28527536]
  11. Nucleic Acids Res. 2019 Jan 8;47(D1):D490-D494 [PMID: 30445555]
  12. Chemistry. 2008;14(30):9286-91 [PMID: 18780382]
  13. Science. 2007 Jan 19;315(5810):387-9 [PMID: 17234949]
  14. Nat Rev Genet. 2013 Jan;14(1):35-48 [PMID: 23207911]
  15. Beilstein J Org Chem. 2018 Aug 28;14:2259-2265 [PMID: 30202480]
  16. ACS Chem Biol. 2009 May 15;4(5):325-34 [PMID: 19298050]
  17. Nat Protoc. 2020 Jan;15(1):161-180 [PMID: 31863077]
  18. Curr Opin Chem Biol. 2018 Jun;44:30-38 [PMID: 29857316]
  19. J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89 [PMID: 24226387]
  20. Nat Chem. 2017 Dec;9(12):1181-1190 [PMID: 29168484]
  21. Science. 2017 Feb 10;355(6325):597-602 [PMID: 28183972]
  22. J Proteome Res. 2017 Apr 7;16(4):1706-1718 [PMID: 28244757]
  23. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  24. Structure. 2012 Nov 7;20(11):1948-59 [PMID: 23041369]
  25. Org Biomol Chem. 2019 Sep 28;17(36):8308-8329 [PMID: 31469151]
  26. Nat Methods. 2013 Dec;10(12):1211-2 [PMID: 24097270]
  27. Chem Biol. 2013 Apr 18;20(4):541-8 [PMID: 23601643]
  28. BMC Bioinformatics. 2011 Nov 09;12:436 [PMID: 22070249]
  29. J Am Chem Soc. 2020 May 6;142(18):8270-8280 [PMID: 32329615]
  30. Nat Methods. 2007 Nov;4(11):923-5 [PMID: 17952086]
  31. J Am Chem Soc. 2018 Jan 10;140(1):200-210 [PMID: 29265822]
  32. Nat Chem Biol. 2020 Feb;16(2):150-159 [PMID: 31768034]
  33. Biochem J. 2021 Feb 12;478(3):511-532 [PMID: 33567070]
  34. Anal Chem. 2019 Jan 2;91(1):178-189 [PMID: 30525468]
  35. Cell. 2006 Nov 3;127(3):635-48 [PMID: 17081983]
  36. Nat Biotechnol. 2006 Oct;24(10):1285-92 [PMID: 16964243]
  37. J Am Chem Soc. 2017 Aug 30;139(34):11670-11673 [PMID: 28787141]
  38. ACS Cent Sci. 2020 Apr 22;6(4):546-554 [PMID: 32342004]
  39. Nat Methods. 2011 Jul 03;8(8):677-83 [PMID: 21725298]
  40. Anal Chem. 2020 Jan 7;92(1):267-291 [PMID: 31626732]
  41. BMC Struct Biol. 2009 Jul 31;9:51 [PMID: 19646261]
  42. Bioconjug Chem. 2012 Dec 19;23(12):2321-8 [PMID: 23181702]
  43. Nature. 2007 Dec 13;450(7172):991-1000 [PMID: 18075578]
  44. Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426 [PMID: 30407594]
  45. Anal Chem. 2017 Mar 21;89(6):3656-3663 [PMID: 28234450]
  46. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 [PMID: 27924014]
  47. Molecules. 2019 Nov 19;24(22): [PMID: 31752288]
  48. Chem Sci. 2016 Feb 1;7(2):1393-1400 [PMID: 29910897]
  49. Nature. 2016 Sep 14;537(7620):347-55 [PMID: 27629641]
  50. J Am Chem Soc. 2020 Apr 1;142(13):6051-6059 [PMID: 32159959]
  51. Angew Chem Int Ed Engl. 2019 Jan 8;58(2):537-541 [PMID: 30444082]
  52. Nature. 2019 May;569(7757):509-513 [PMID: 31068699]
  53. J Am Chem Soc. 2004 Mar 31;126(12):3718-9 [PMID: 15038717]
  54. Biochem J. 2020 Mar 13;477(5):905-923 [PMID: 32039437]
  55. Nature. 2010 Dec 9;468(7325):790-5 [PMID: 21085121]

Grants

  1. R01 GM127711/NIGMS NIH HHS

MeSH Term

Humans
Ligands
Protein Binding
Proteome
Proteomics
Tyrosine

Chemicals

Ligands
Proteome
Tyrosine

Word Cloud

Created with Highcharts 10.0.0tyrosineresiduesreactivityresidueproteinswiderangeincludingbindingmethodbioorthogonalchemistrymultiplexedproteomicshumanproteomepeptidesquantifiedsitesactivityproteinparticipatesactivitiesenzymaticcatalysisprotein-proteininteractionprotein-ligandHoweverfunctionalannotationlargescalestillchallengingreportnovelintegratingazocouplinggloballyinvestigateBasedazo-couplingreactionaryldiazoniumsalttwodifferentprobesevaluatedprobebestperformanceemployedstudytaggedtyrosine-containingselectivelyenrichedusingcleavagesmalltagperfectlyfitssite-specificanalysisMSCoupling5000MCF7cellsdisplayedhighfoundfunctionallystructurallydiversecatalyticpropertycanextensivelyappliedadvanceunderstandingfunctionsfacilitatedevelopmentcovalentdrugsregulateAzoCoupling-BasedChemoproteomicApproachSystematicallyProfileTyrosineReactivityHumanProteome

Similar Articles

Cited By