Deep learning for COVID-19 detection based on CT images.

Wentao Zhao, Wei Jiang, Xinguo Qiu
Author Information
  1. Wentao Zhao: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China. ORCID
  2. Wei Jiang: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
  3. Xinguo Qiu: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China. xgqiu@zjut.edu.cn. ORCID

Abstract

COVID-19 has tremendously impacted patients and medical systems globally. Computed tomography images can effectively complement the reverse transcription-polymerase chain reaction testing. This study adopted a convolutional neural network for COVID-19 testing. We examined the performance of different pre-trained models on CT testing and identified that larger, out-of-field datasets boost the testing power of the models. This suggests that a priori knowledge of the models from out-of-field training is also applicable to CT images. The proposed transfer learning approach proves to be more successful than the current approaches described in literature. We believe that our approach has achieved the state-of-the-art performance in identification thus far. Based on experiments with randomly sampled training datasets, the results reveal a satisfactory performance by our model. We investigated the relevant visual characteristics of the CT images used by the model; these may assist clinical doctors in manual screening.

References

  1. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  2. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  3. PLoS One. 2021 Mar 12;16(3):e0248414 [PMID: 33711046]
  4. J Med Virol. 2020 Jul;92(7):903-908 [PMID: 32219885]
  5. Travel Med Infect Dis. 2020 Mar - Apr;34:101623 [PMID: 32179124]
  6. Cell. 2020 Jun 11;181(6):1423-1433.e11 [PMID: 32416069]
  7. SN Comput Sci. 2021;2(1):18 [PMID: 33426530]
  8. Nat Med. 2020 Aug;26(8):1224-1228 [PMID: 32427924]
  9. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  10. IEEE Access. 2021 Feb 10;9:30551-30572 [PMID: 34976571]
  11. Biomed Signal Process Control. 2021 Jul;68:102588 [PMID: 33821166]
  12. Radiology. 2020 Aug;296(2):E32-E40 [PMID: 32101510]
  13. Radiology. 2020 Aug;296(2):E115-E117 [PMID: 32073353]
  14. Eur J Radiol. 2020 May;126:108941 [PMID: 32193037]
  15. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]
  16. Chaos Solitons Fractals. 2020 Sep;138:109944 [PMID: 32536759]
  17. IEEE Trans Med Imaging. 2016 May;35(5):1299-1312 [PMID: 26978662]
  18. Radiology. 2020 Aug;296(2):E46-E54 [PMID: 32155105]
  19. Inform Med Unlocked. 2021;22:100505 [PMID: 33363252]
  20. Sensors (Basel). 2021 Mar 10;21(6): [PMID: 33801944]
  21. Lancet Infect Dis. 2020 Apr;20(4):425-434 [PMID: 32105637]
  22. J Clin Imaging Sci. 2020 Jun 09;10:35 [PMID: 32547838]
  23. SN Comput Sci. 2020;1(5):274 [PMID: 33063053]
  24. Nat Commun. 2020 Aug 14;11(1):4080 [PMID: 32796848]
  25. Chaos Solitons Fractals. 2020 Nov;140:110190 [PMID: 32836918]
  26. SN Comput Sci. 2020;1(6):363 [PMID: 33163975]
  27. Med Phys. 2011 Feb;38(2):915-31 [PMID: 21452728]
  28. Sci Rep. 2020 Nov 11;10(1):19549 [PMID: 33177550]
  29. Front Med (Lausanne). 2020 Dec 23;7:608525 [PMID: 33425953]
  30. Radiology. 2020 Aug;296(2):E15-E25 [PMID: 32083985]
  31. J Thorac Oncol. 2020 May;15(5):700-704 [PMID: 32114094]
  32. JAMA. 2020 May 12;323(18):1843-1844 [PMID: 32159775]
  33. Inform Med Unlocked. 2020;20:100412 [PMID: 32835084]
  34. SN Comput Sci. 2020;1(4):206 [PMID: 33063049]
  35. Front Med (Lausanne). 2022 Mar 10;8:729287 [PMID: 35360446]
  36. SN Comput Sci. 2020;1(6):320 [PMID: 33063058]
  37. Invest Radiol. 2020 May;55(5):257-261 [PMID: 32091414]
  38. Nat Biomed Eng. 2020 Dec;4(12):1197-1207 [PMID: 33208927]
  39. Sci Rep. 2021 Apr 29;11(1):9315 [PMID: 33927239]

Grants

  1. EM 2016070101/Key Laboratory of E&;M (Zhejiang University of Technology), Ministry of Education&;Zhejiang Province

MeSH Term

COVID-19
COVID-19 Testing
Deep Learning
Humans
Image Processing, Computer-Assisted
Neural Networks, Computer
SARS-CoV-2
Tomography, X-Ray Computed

Word Cloud

Created with Highcharts 10.0.0imagestestingCTCOVID-19performancemodelsout-of-fielddatasetstraininglearningapproachmodeltremendouslyimpactedpatientsmedicalsystemsgloballyComputedtomographycaneffectivelycomplementreversetranscription-polymerasechainreactionstudyadoptedconvolutionalneuralnetworkexamineddifferentpre-trainedidentifiedlargerboostpowersuggestsprioriknowledgealsoapplicableproposedtransferprovessuccessfulcurrentapproachesdescribedliteraturebelieveachievedstate-of-the-artidentificationthusfarBasedexperimentsrandomlysampledresultsrevealsatisfactoryinvestigatedrelevantvisualcharacteristicsusedmayassistclinicaldoctorsmanualscreeningDeepdetectionbased

Similar Articles

Cited By