Coordination of movement via complementary interactions of leaders and followers in termite mating pairs.

Nobuaki Mizumoto, Sang-Bin Lee, Gabriele Valentini, Thomas Chouvenc, Stephen C Pratt
Author Information
  1. Nobuaki Mizumoto: School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
  2. Sang-Bin Lee: Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Ft. Lauderdale, FL 33314, USA.
  3. Gabriele Valentini: School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
  4. Thomas Chouvenc: Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Ft. Lauderdale, FL 33314, USA.
  5. Stephen C Pratt: School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.

Abstract

In collective animal motion, coordination is often achieved by feedback between leaders and followers. For stable coordination, a leader's signals and a follower's responses are hypothesized to be attuned to each other. However, their roles are difficult to disentangle in species with highly coordinated movements, hiding potential diversity of behavioural mechanisms for collective behaviour. Here, we show that two termite species achieve a similar level of coordination via distinct sets of complementary leader-follower interactions. Even though females produce less pheromone than , tandem runs of both species were stable. Heterospecific pairs with males were also stable, but not those with males. We attributed this to the males' adaptation to the conspecific females; males have a unique capacity to follow females with small amounts of pheromone, while males reject females as unsuitable but are competitive over females with large amounts of pheromone. An information-theoretic analysis supported this conclusion by detecting information flow from female to male only in stable tandems. Our study highlights cryptic interspecific variation in movement coordination, a source of novelty for the evolution of social interactions.

Keywords

Associated Data

Dryad | 10.5061/dryad.9w0vt4bf9
figshare | 10.6084/m9.figshare.c.5488660

References

  1. Behav Processes. 2010 Jul;84(3):671-4 [PMID: 20350591]
  2. PLoS Biol. 2011 Jul;9(7):e1001110 [PMID: 21814488]
  3. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19072-7 [PMID: 19060198]
  4. Front Robot AI. 2018 Jun 11;5:60 [PMID: 33718436]
  5. J R Soc Interface. 2021 Mar;18(176):20200925 [PMID: 33784885]
  6. Commun Biol. 2021 Feb 12;4(1):196 [PMID: 33580197]
  7. PLoS One. 2015 Mar 25;10(3):e0120745 [PMID: 25806968]
  8. J Exp Biol. 2018 Aug 24;221(Pt 16): [PMID: 29954834]
  9. Behav Processes. 2010 Jul;84(3):635-47 [PMID: 20435103]
  10. J Anim Ecol. 2020 Nov;89(11):2531-2541 [PMID: 32745238]
  11. J Theor Biol. 2002 Jan 7;214(1):63-70 [PMID: 11786032]
  12. Sci Adv. 2020 Dec 2;6(49): [PMID: 33268362]
  13. PLoS One. 2012;7(6):e38588 [PMID: 22761685]
  14. Proc Biol Sci. 2021 Jul 14;288(1954):20210998 [PMID: 34255998]
  15. R Soc Open Sci. 2018 Dec 12;5(12):181132 [PMID: 30662732]
  16. Trends Ecol Evol. 2007 Sep;22(9):465-71 [PMID: 17640765]
  17. J Exp Biol. 2016 Oct 1;219(Pt 19):2971-2983 [PMID: 27707862]
  18. Phys Rev Lett. 2000 Jul 10;85(2):461-4 [PMID: 10991308]
  19. Curr Biol. 2009 Feb 10;19(3):248-52 [PMID: 19185497]
  20. Nature. 2005 Feb 3;433(7025):513-6 [PMID: 15690039]
  21. Am Nat. 2020 Nov;196(5):555-565 [PMID: 33064584]
  22. Nature. 2006 Jan 12;439(7073):153 [PMID: 16407943]
  23. Behav Ecol. 2008 Jul;19(4):764-773 [PMID: 19461839]
  24. Science. 2012 Sep 7;337(6099):1212-5 [PMID: 22903520]
  25. Proc Biol Sci. 2016 Feb 10;283(1824): [PMID: 26865296]
  26. Science. 1974 Dec 13;186(4168):1046-7 [PMID: 4469698]
  27. J Chem Ecol. 2020 Jun;46(5-6):461-474 [PMID: 32300913]
  28. Annu Rev Entomol. 2012;57:355-75 [PMID: 21942844]
  29. Proc Biol Sci. 2016 Mar 30;283(1827):20160179 [PMID: 27030416]
  30. J Anim Ecol. 2020 Nov;89(11):2542-2552 [PMID: 32799344]
  31. Sci Adv. 2019 Jun 19;5(6):eaau6108 [PMID: 31223644]
  32. Annu Rev Entomol. 2013;58:455-74 [PMID: 23020620]
  33. Evol Dev. 2001 Mar-Apr;3(2):109-19 [PMID: 11341673]
  34. Curr Biol. 2009 Oct 13;19(19):R911-6 [PMID: 19825357]
  35. Elife. 2020 Jul 30;9: [PMID: 32730203]

MeSH Term

Animals
Female
Isoptera
Male
Pheromones

Chemicals

Pheromones

Word Cloud

Created with Highcharts 10.0.0femalescoordinationstablemalescollectivespeciesinteractionspheromoneleadersfollowersbehaviourtermiteviacomplementarytandempairsamountsmovementanimalmotionoftenachievedfeedbackleader'ssignalsfollower'sresponseshypothesizedattunedHoweverrolesdifficultdisentanglehighlycoordinatedmovementshidingpotentialdiversitybehaviouralmechanismsshowtwoachievesimilarleveldistinctsetsleader-followerEventhoughproducelessrunsHeterospecificalsoattributedmales'adaptationconspecificuniquecapacityfollowsmallrejectunsuitablecompetitivelargeinformation-theoreticanalysissupportedconclusiondetectinginformationflowfemalemaletandemsstudyhighlightscrypticinterspecificvariationsourcenoveltyevolutionsocialCoordinationmatinghybridizationleadershipruntransferentropy

Similar Articles

Cited By