Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice.

Kate Beecher, Joshua Wang, Angela Jacques, Nicholas Chaaya, Fatemeh Chehrehasa, Arnauld Belmer, Selena E Bartlett
Author Information
  1. Kate Beecher: Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
  2. Joshua Wang: Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
  3. Angela Jacques: Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
  4. Nicholas Chaaya: Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
  5. Fatemeh Chehrehasa: Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
  6. Arnauld Belmer: Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
  7. Selena E Bartlett: Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.

Abstract

The overconsumption of sugar-sweetened food and beverages underpins the current rise in obesity rates. Sugar overconsumption induces maladaptive neuroplasticity to decrease dietary control. Although serotonin and glutamate co-localisation has been implicated in reward processing, it is still unknown how chronic sucrose consumption changes this transmission in regions associated with executive control over feeding-such as the prefrontal cortex (PFC) and dentate gyrus (DG) of the hippocampus. To address this, a total of 16 C57Bl6 mice received either 5% w/v sucrose or water as a control for 12 weeks using the Drinking-In-The-Dark paradigm ( = 8 mice per group). We then examined the effects of chronic sucrose consumption on the immunological distribution of serotonin (5-HT), vesicular glutamate transporter 3 (VGLUT3) and 5-HT/VGLUT3 co-localised axonal varicosities. Sucrose consumption over 12 weeks decreased the number of 5-HT/VGLUT3 and 5-HT/VGLUT3 varicosities within the PFC and DG. The number of 5-HT/VGLUT3 varicosities remained unchanged within the PFC but decreased in the DG following sucrose consumption. Given that serotonin mediates DG neurogenesis through microglial migration, the number of microglia within the DG was also assessed in both experimental groups. Sucrose consumption decreased the number of DG microglia. Although the DG and PFC are associated with executive control over rewarding activities and emotional memory formation, we did not detect a subsequent change in DG neurogenesis or anxiety-like behaviour or depressive-like behaviour. Overall, these findings suggest that the chronic consumption of sugar alters serotonergic neuroplasticity within neural circuits responsible for feeding control. Although these alterations alone were not sufficient to induce changes in neurogenesis or behaviour, it is proposed that the sucrose consumption may predispose individuals to these cognitive deficits which ultimately promote further sugar intake.

Keywords

References

  1. Neuropharmacology. 2018 Mar 1;130:10-17 [PMID: 29191750]
  2. Alcohol. 2011 Aug;45(5):427-40 [PMID: 21194877]
  3. Brain Behav Immun. 2019 Feb;76:104-115 [PMID: 30447281]
  4. J Cogn Neurosci. 2011 Aug;23(8):1952-63 [PMID: 20807052]
  5. Neuropsychopharmacology. 2011 Jan;36(2):423-33 [PMID: 20927048]
  6. Nat Protoc. 2006;1(1):122-4 [PMID: 17406223]
  7. J Comp Neurol. 2008 Nov 10;511(2):271-85 [PMID: 18785628]
  8. Front Neurosci. 2021 Jun 07;15:670430 [PMID: 34163325]
  9. Neuroscience. 2003;122(1):17-20 [PMID: 14596845]
  10. Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16335-40 [PMID: 17913892]
  11. PLoS One. 2015 Mar 18;10(3):e0119378 [PMID: 25785698]
  12. Mol Psychiatry. 2012 Feb;17(2):154-63 [PMID: 22158014]
  13. Physiol Behav. 2009 Jan 8;96(1):1-5 [PMID: 18718844]
  14. Biochim Biophys Acta. 2015 Nov;1852(11):2379-90 [PMID: 26300486]
  15. J Neurosci. 2017 Feb 15;37(7):1785-1796 [PMID: 28087766]
  16. Neuropharmacology. 2018 Jul 15;137:24-32 [PMID: 29729502]
  17. Genes Brain Behav. 2019 Mar;18(3):e12528 [PMID: 30324647]
  18. Nutr Neurosci. 2008 Apr;11(2):48-54 [PMID: 18510803]
  19. J Neurosci. 2010 Feb 10;30(6):2198-210 [PMID: 20147547]
  20. J Chem Neuroanat. 2009 Dec;38(4):273-81 [PMID: 19467322]
  21. PLoS One. 2013 May 31;8(5):e64750 [PMID: 23741384]
  22. Int J Neuropsychopharmacol. 2007 Oct;10(5):675-81 [PMID: 16959056]
  23. Physiol Behav. 2005 Mar 16;84(3):359-62 [PMID: 15763572]
  24. Neuron. 2011 Aug 11;71(3):488-97 [PMID: 21835345]
  25. PLoS One. 2016 Mar 30;11(3):e0150270 [PMID: 27028298]
  26. Eur Child Adolesc Psychiatry. 2019 Oct;28(10):1329-1340 [PMID: 30805764]
  27. Am J Physiol Endocrinol Metab. 2012 Jun 1;302(11):E1399-406 [PMID: 22436698]
  28. Cell Rep. 2019 Jan 29;26(5):1128-1142.e7 [PMID: 30699344]
  29. Physiol Behav. 2011 Apr 18;103(1):59-68 [PMID: 21167850]
  30. Regul Pept. 2011 Feb 25;167(1):26-30 [PMID: 21115071]
  31. Nat Protoc. 2007;2(2):322-8 [PMID: 17406592]
  32. Physiol Behav. 2005 Jan 31;84(1):53-63 [PMID: 15642607]
  33. J Nutr Biochem. 2017 May;43:47-52 [PMID: 28242565]
  34. Sci Rep. 2018 Feb 1;8(1):2099 [PMID: 29391482]
  35. Neurosci Biobehav Rev. 2019 Aug;103:178-199 [PMID: 31125634]
  36. Neuron. 2008 Nov 26;60(4):582-9 [PMID: 19038216]
  37. Nat Neurosci. 2010 Dec;13(12):1457-9 [PMID: 21037584]
  38. Front Cell Neurosci. 2019 May 10;13:193 [PMID: 31133811]
  39. Science. 2009 May 1;324(5927):646-8 [PMID: 19407204]
  40. Neuron. 2006 Jul 20;51(2):239-49 [PMID: 16846858]
  41. Psychopharmacology (Berl). 2019 Jan;236(1):383-397 [PMID: 30610350]
  42. Neuropharmacology. 2020 Mar 1;164:107902 [PMID: 31811873]
  43. J Neurosci. 2002 Jul 1;22(13):5442-51 [PMID: 12097496]
  44. J Vis Exp. 2015 Mar 02;(97): [PMID: 25867960]
  45. Front Mol Neurosci. 2016 Jan 19;8:86 [PMID: 26834554]
  46. Physiol Behav. 2001 Nov-Dec;74(4-5):507-16 [PMID: 11790410]
  47. Obesity (Silver Spring). 2009 Mar;17(3):494-503 [PMID: 19057523]
  48. Neuropharmacology. 2020 Apr;166:107950 [PMID: 31935392]
  49. Curr Protoc Neurosci. 2014 Jul 01;68:9.49.1-12 [PMID: 24984686]
  50. Front Behav Neurosci. 2019 Nov 29;13:264 [PMID: 31849624]
  51. ACS Chem Neurosci. 2015 Jul 15;6(7):1219-30 [PMID: 25857335]
  52. Behav Brain Res. 2015 Jan 15;277:49-57 [PMID: 25125239]
  53. Front Mol Neurosci. 2018 Oct 30;11:389 [PMID: 30425618]
  54. Mol Brain. 2013 Jul 09;6:32 [PMID: 23835161]
  55. Nat Commun. 2020 Aug 24;11(1):4218 [PMID: 32839452]
  56. Psychopharmacology (Berl). 1994 Sep;116(1):120-2 [PMID: 7862925]
  57. Neuroscience. 2004;123(4):983-1002 [PMID: 14751290]
  58. Chem Senses. 2013 Mar;38(3):211-20 [PMID: 23254343]
  59. Neuron. 2014 Mar 19;81(6):1360-1374 [PMID: 24656254]
  60. Brain Struct Funct. 2017 Apr;222(3):1297-1314 [PMID: 27485750]
  61. Nature. 1995 Apr 6;374(6522):542-6 [PMID: 7700379]
  62. Psychopharmacology (Berl). 1997 Oct;133(3):309-12 [PMID: 9361339]
  63. J Vet Sci. 2014;15(1):27-33 [PMID: 24136217]
  64. Cell Stem Cell. 2010 Oct 8;7(4):483-95 [PMID: 20887954]
  65. J Neurochem. 2019 Mar;148(6):779-795 [PMID: 30556914]
  66. J Comp Neurol. 2010 Mar 1;518(5):668-86 [PMID: 20034056]
  67. Elife. 2020 Mar 09;9: [PMID: 32150529]
  68. Curr Opin Neurobiol. 2015 Feb;30:51-8 [PMID: 25240202]
  69. Neuropsychopharmacology. 2005 Jun;30(6):1056-63 [PMID: 15668722]
  70. Neuroscience. 2007 Apr 25;146(1):108-22 [PMID: 17307295]
  71. Alcohol Clin Exp Res. 2015 Mar;39(3):463-75 [PMID: 25703719]
  72. Biol Psychiatry. 2009 Apr 15;65(8):662-70 [PMID: 19095222]
  73. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1864-9 [PMID: 9465108]
  74. Eur J Neurosci. 2006 Jan;23(1):83-93 [PMID: 16420418]
  75. Nat Commun. 2014 Nov 12;5:5390 [PMID: 25388237]
  76. Neuropsychopharmacology. 2018 Jun;43(7):1623-1632 [PMID: 29453444]
  77. Cell Rep. 2014 Sep 25;8(6):1857-1869 [PMID: 25242321]
  78. Obesity (Silver Spring). 2007 Feb;15(2):271-6 [PMID: 17299098]
  79. Mol Cell Neurosci. 2006 Jan;31(1):149-60 [PMID: 16297637]
  80. Neuropsychopharmacology. 1999 Aug;21(2 Suppl):46S-51S [PMID: 10432488]
  81. Obesity (Silver Spring). 2008 Feb;16(2):348-55 [PMID: 18239643]
  82. Glia. 2019 Apr;67(4):594-618 [PMID: 30453385]
  83. Front Behav Neurosci. 2016 Oct 13;10:189 [PMID: 27790098]
  84. Med Princ Pract. 2016;25(6):539-547 [PMID: 27532271]
  85. J Biol Chem. 2008 Jun 20;283(25):17194-204 [PMID: 18442977]
  86. Science. 2002 Jul 26;297(5581):609-11 [PMID: 12142539]

Word Cloud

Created with Highcharts 10.0.0consumptionDGsucrosecontrolPFC5-HT/VGLUT3numberwithinneurogenesisneuroplasticityAlthoughserotoninchronicvaricositiesSucrosedecreasedmicrogliabehaviouroverconsumptionglutamatechangesassociatedexecutivemice12weeks5-HTVGLUT3sugarserotonergicsugar-sweetenedfoodbeveragesunderpinscurrentriseobesityratesSugarinducesmaladaptivedecreasedietaryco-localisationimplicatedrewardprocessingstillunknowntransmissionregionsfeeding-suchprefrontalcortexdentategyrushippocampusaddresstotal16C57Bl6receivedeither5%w/vwaterusingDrinking-In-The-Darkparadigm=8pergroupexaminedeffectsimmunologicaldistributionvesiculartransporter3co-localisedaxonalremainedunchangedfollowingGivenmediatesmicroglialmigrationalsoassessedexperimentalgroupsrewardingactivitiesemotionalmemoryformationdetectsubsequentchangeanxiety-likedepressive-likeOverallfindingssuggestaltersneuralcircuitsresponsiblefeedingalterationsalonesufficientinduceproposedmaypredisposeindividualscognitivedeficitsultimatelypromoteintakeConsumptionAltersSerotonin/GlutamateCo-localisationWithinPrefrontalCortexHippocampusMiceaddictionpMAPK

Similar Articles

Cited By