Effective Solid Electrolyte Interphase Formation on Lithium Metal Anodes by Mechanochemical Modification.

Julia Wellmann, Jan-Paul Brinkmann, Björn Wankmiller, Kerstin Neuhaus, Uta Rodehorst, Michael R Hansen, Martin Winter, Elie Paillard
Author Information
  1. Julia Wellmann: Forschungszentrum Jülich GmbH (IEK-12) Helmholtz-Institute Münster, Corrensstraße 46, Münster 48149, Germany. ORCID
  2. Jan-Paul Brinkmann: Forschungszentrum Jülich GmbH (IEK-12) Helmholtz-Institute Münster, Corrensstraße 46, Münster 48149, Germany.
  3. Björn Wankmiller: Institute of Physical Chemistry, University of Münster, Corrensstraße 28-30, Münster 48149, Germany.
  4. Kerstin Neuhaus: Forschungszentrum Jülich GmbH (IEK-12) Helmholtz-Institute Münster, Corrensstraße 46, Münster 48149, Germany.
  5. Uta Rodehorst: Forschungszentrum Jülich GmbH (IEK-12) Helmholtz-Institute Münster, Corrensstraße 46, Münster 48149, Germany.
  6. Michael R Hansen: Institute of Physical Chemistry, University of Münster, Corrensstraße 28-30, Münster 48149, Germany. ORCID
  7. Martin Winter: Forschungszentrum Jülich GmbH (IEK-12) Helmholtz-Institute Münster, Corrensstraße 46, Münster 48149, Germany.
  8. Elie Paillard: Forschungszentrum Jülich GmbH (IEK-12) Helmholtz-Institute Münster, Corrensstraße 46, Münster 48149, Germany. ORCID

Abstract

Lithium metal batteries are gaining increasing attention due to their potential for significantly higher theoretical energy density than conventional lithium ion batteries. Here, we present a novel mechanochemical modification method for lithium metal anodes, involving roll-pressing the lithium metal foil in contact with ionic liquid-based solutions, enabling the formation of an artificial solid electrolyte interphase with favorable properties such as an improved lithium ion transport and, most importantly, the suppression of dendrite growth, allowing homogeneous electrodeposition/-dissolution using conventional and highly conductive room temperature alkyl carbonate-based electrolytes. As a result, stable cycling in symmetrical Li∥Li cells is achieved even at a high current density of 10 mA cm. Furthermore, the rate capability and the capacity retention in NMC∥Li cells are significantly improved.

Keywords

References

  1. Phys Chem Chem Phys. 2015 Apr 14;17(14):8670-9 [PMID: 25735488]
  2. Nat Commun. 2016 Jun 13;7:ncomms11794 [PMID: 27292652]
  3. ACS Appl Mater Interfaces. 2020 Jul 22;12(29):32851-32862 [PMID: 32600026]
  4. Nano Lett. 2017 Feb 8;17(2):1132-1139 [PMID: 28072543]
  5. Chem Rev. 2004 Oct;104(10):4303-417 [PMID: 15669157]
  6. Chem Rev. 2014 Dec 10;114(23):11751-87 [PMID: 25026475]
  7. Adv Sci (Weinh). 2017 Mar 31;4(8):1700032 [PMID: 28852621]
  8. Nano Lett. 2017 Jun 14;17(6):3731-3737 [PMID: 28535068]
  9. Phys Chem Chem Phys. 2019 Dec 21;21(47):26084-26094 [PMID: 31746873]
  10. ACS Appl Mater Interfaces. 2019 Jun 19;11(24):21955-21964 [PMID: 31124650]
  11. ACS Appl Mater Interfaces. 2015 Mar 18;7(10):5950-8 [PMID: 25714124]
  12. Nat Commun. 2015 Feb 20;6:6362 [PMID: 25698340]
  13. Adv Mater. 2018 May;30(21):e1706102 [PMID: 29575163]
  14. Top Curr Chem (Cham). 2017 Apr;375(2):37 [PMID: 28299728]
  15. Chem Rev. 2018 Dec 12;118(23):11433-11456 [PMID: 30500179]
  16. J Am Chem Soc. 2017 Aug 23;139(33):11550-11558 [PMID: 28743184]

Word Cloud

Created with Highcharts 10.0.0lithiummetalbatteriesLithiumsignificantlydensityconventionalionmechanochemicalmodificationanodesionicsolidelectrolyteinterphaseimprovedcellsgainingincreasingattentionduepotentialhighertheoreticalenergypresentnovelmethodinvolvingroll-pressingfoilcontactliquid-basedsolutionsenablingformationartificialfavorablepropertiestransportimportantlysuppressiondendritegrowthallowinghomogeneouselectrodeposition/-dissolutionusinghighlyconductiveroomtemperaturealkylcarbonate-basedelectrolytesresultstablecyclingsymmetricalLi∥Liachievedevenhighcurrent10mAcmFurthermoreratecapabilitycapacityretentionNMC∥LiEffectiveSolidElectrolyteInterphaseFormationMetalAnodesMechanochemicalModificationliquids

Similar Articles

Cited By