Fluorescence-Detected Mid-Infrared Photothermal Microscopy.

Yi Zhang, Haonan Zong, Cheng Zong, Yuying Tan, Meng Zhang, Yuewei Zhan, Ji-Xin Cheng
Author Information
  1. Yi Zhang: Department of Physics, Boston University, Boston, Massachusetts 02215, United States.
  2. Haonan Zong: Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.
  3. Cheng Zong: Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.
  4. Yuying Tan: Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.
  5. Meng Zhang: Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.
  6. Yuewei Zhan: Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.
  7. Ji-Xin Cheng: Department of Physics, Boston University, Boston, Massachusetts 02215, United States. ORCID

Abstract

Mid-infrared photothermal microscopy is a new chemical imaging technology in which a visible beam senses the photothermal effect induced by a pulsed infrared laser. This technology provides infrared spectroscopic information at submicrometer spatial resolution and enables infrared spectroscopy and imaging of living cells and organisms. Yet, current mid-infrared photothermal imaging sensitivity suffers from a weak dependence of scattering on the temperature, and the image quality is vulnerable to the speckles caused by scattering. Here, we present a novel version of mid-infrared photothermal microscopy in which thermosensitive fluorescent probes are harnessed to sense the mid-infrared photothermal effect. The fluorescence intensity can be modulated at the level of 1% per Kelvin, which is 100 times larger than the modulation of scattering intensity. In addition, fluorescence emission is free of interference, thus much improving the image quality. Moreover, fluorophores can target specific organelles or biomolecules, thus augmenting the specificity of photothermal imaging. Spectral fidelity is confirmed through fingerprinting a single bacterium. Finally, the photobleaching issue is successfully addressed through the development of a wide-field fluorescence-detected mid-infrared photothermal microscope which allows video rate bond-selective imaging of biological specimens.

References

  1. Nat Biotechnol. 2005 Apr;23(4):469-74 [PMID: 15793574]
  2. Light Sci Appl. 2019 Dec 11;8:116 [PMID: 31839936]
  3. J Phys Chem B. 2017 Sep 21;121(37):8838-8846 [PMID: 28741348]
  4. Anal Chem. 2020 Nov 3;92(21):14459-14465 [PMID: 33089997]
  5. Sci Rep. 2019 Jun 20;9(1):8937 [PMID: 31222180]
  6. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  7. Cell Stem Cell. 2017 Mar 2;20(3):303-314.e5 [PMID: 28041894]
  8. Appl Environ Microbiol. 2005 Oct;71(10):6453-7 [PMID: 16204579]
  9. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  10. Nat Methods. 2006 Oct;3(10):793-5 [PMID: 16896339]
  11. Light Sci Appl. 2015;4: [PMID: 26167336]
  12. Appl Microbiol Biotechnol. 2009 Sep;84(3):511-7 [PMID: 19390851]
  13. J Phys Chem B. 2019 Aug 29;123(34):7282-7289 [PMID: 31429279]
  14. Nat Chem Biol. 2014 Jul;10(7):512-23 [PMID: 24937069]
  15. J Am Chem Soc. 2021 Jul 28;143(29):10809-10815 [PMID: 34270255]
  16. J Phys Chem Lett. 2019 Apr 18;10(8):1967-1972 [PMID: 30942587]
  17. Chem Rev. 2003 Oct;103(10):3899-4032 [PMID: 14531716]
  18. J Cancer Res Clin Oncol. 2019 Mar;145(3):685-694 [PMID: 30603907]
  19. J Fluoresc. 2004 Sep;14(5):535-47 [PMID: 15617261]
  20. Cell Metab. 2014 Mar 4;19(3):393-406 [PMID: 24606897]
  21. J Microsc. 2000 May;198(Pt 2):82-7 [PMID: 10810003]
  22. Biochim Biophys Acta. 2013 Oct;1828(10):2339-46 [PMID: 23357359]
  23. Bioelectromagnetics. 2009 Oct;30(7):583-90 [PMID: 19507188]
  24. Biochim Biophys Acta. 2003 Sep 30;1606(1-3):137-46 [PMID: 14507434]
  25. Sci Adv. 2016 Sep 28;2(9):e1600521 [PMID: 27704043]
  26. Biochim Biophys Acta. 2004 Mar 2;1688(2):176-86 [PMID: 14990348]
  27. Analyst. 2013 Apr 7;138(7):1940-51 [PMID: 23400222]
  28. Anal Chem. 2017 May 2;89(9):4863-4867 [PMID: 28398722]
  29. Nat Methods. 2008 May;5(5):417-23 [PMID: 18408726]
  30. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  31. Anal Chem. 2021 Mar 2;93(8):4100-4107 [PMID: 33596049]
  32. Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3388-3396 [PMID: 32015103]
  33. Bioorg Med Chem. 2006 May 1;14(9):3210-7 [PMID: 16412649]
  34. J Cell Biol. 1985 Mar;100(3):965-73 [PMID: 3972906]
  35. Nano Lett. 2012 Apr 11;12(4):2107-11 [PMID: 22394124]
  36. J Phys Chem Lett. 2019 Jun 6;10(11):2857-2861 [PMID: 31025568]
  37. J Mol Struct. 2020 Jun 15;1210: [PMID: 33859444]
  38. Biophys J. 1998 Oct;75(4):1915-25 [PMID: 9746532]
  39. Nat Photonics. 2019 Sep;13:609-615 [PMID: 31440304]
  40. Nat Commun. 2020 Sep 24;11(1):4830 [PMID: 32973134]
  41. Analyst. 2015 Apr 7;140(7):2493-503 [PMID: 25600495]
  42. Sci Adv. 2021 May 14;7(20): [PMID: 33990332]
  43. Anal Chem. 2020 Jul 21;92(14):9649-9657 [PMID: 32567834]
  44. Chem Rev. 2009 Jan;109(1):190-212 [PMID: 19105748]
  45. Sci Adv. 2019 Jul 19;5(7):eaav7127 [PMID: 31334347]
  46. Adv Sci (Weinh). 2020 Feb 07;7(6):1903004 [PMID: 32195099]
  47. Anal Chem. 2019 Aug 20;91(16):10750-10756 [PMID: 31313580]
  48. J Phys Chem B. 2017 Nov 9;121(44):10249-10255 [PMID: 29035533]

Grants

  1. R35 GM136223/NIGMS NIH HHS
  2. R43 GM142346/NIGMS NIH HHS
  3. R44 GM142346/NIGMS NIH HHS

MeSH Term

Fluorescence
Fluorescent Dyes
Microscopy, Fluorescence
Spectrophotometry, Infrared

Chemicals

Fluorescent Dyes

Word Cloud

Created with Highcharts 10.0.0photothermalimagingmid-infraredinfraredscatteringmicroscopytechnologyeffectimagequalityfluorescenceintensitycanthusMid-infrarednewchemicalvisiblebeamsensesinducedpulsedlaserprovidesspectroscopicinformationsubmicrometerspatialresolutionenablesspectroscopylivingcellsorganismsYetcurrentsensitivitysuffersweakdependencetemperaturevulnerablespecklescausedpresentnovelversionthermosensitivefluorescentprobesharnessedsensemodulatedlevel1%perKelvin100timeslargermodulationadditionemissionfreeinterferencemuchimprovingMoreoverfluorophorestargetspecificorganellesbiomoleculesaugmentingspecificitySpectralfidelityconfirmedfingerprintingsinglebacteriumFinallyphotobleachingissuesuccessfullyaddresseddevelopmentwide-fieldfluorescence-detectedmicroscopeallowsvideoratebond-selectivebiologicalspecimensFluorescence-DetectedMid-InfraredPhotothermalMicroscopy

Similar Articles

Cited By