Evolutionary Modifications Are Moderate in the Astroglial System of Actinopterygii as Revealed by GFAP Immunohistochemistry.

Mihály Kálmán, Vanessza Matuz, Olivér M Sebők, Dávid Lőrincz
Author Information
  1. Mihály Kálmán: Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary.
  2. Vanessza Matuz: Department of Zoology, University of Veterinary Medicine, Budapest, Hungary.
  3. Olivér M Sebők: Department of Zoology, University of Veterinary Medicine, Budapest, Hungary.
  4. Dávid Lőrincz: Department of Zoology, University of Veterinary Medicine, Budapest, Hungary.

Abstract

The present paper is the first comparative study on the astroglia of several actinopterygian species at different phylogenetical positions, teleosts (16 species), and non-teleosts (3 species), based on the immunohistochemical staining of GFAP (glial fibrillary acidic protein), the characteristic cytoskeletal intermediary filament protein, and immunohistochemical marker of astroglia. The question was, how the astroglial architecture reflexes the high diversity of this largest vertebrate group. The actinopterygian telencephalon has a so-called 'eversive' development in contrast to the 'evagination' found in sarcopterygii (including tetrapods). Several brain parts either have no equivalents in tetrapod vertebrates (e.g., torus longitudinalis, lobus inferior, lobus nervi vagi), or have rather different shapes (e.g., the cerebellum). GFAP was visualized applying DAKO polyclonal anti-GFAP serum. The study was focused mainly on the telencephalon (eversion), tectum (visual orientation), and cerebellum (motor coordination) where the evolutionary changes were most expected, but the other areas were also investigated. The predominant astroglial elements were tanycytes (long, thin, fiber-like cells). In the teleost telencephala a 'fan-shape' re-arrangement of radial glia reflects the eversion. In bichir, starlet, and gar, in which the eversion is less pronounced, the 'fan-shape' re-arrangement did not form. In the tectum the radial glial processes were immunostained, but in Ostariophysi and Euteleostei it did not extend into their deep segments. In the cerebellum Bergmann-like glia was found in each group, including non-teleosts, except for Cyprinidae. The vagal lobe was uniquely enlarged and layered in Cyprininae, and had a corresponding layered astroglial system, which left almost free of GFAP the zones of sensory and motor neurons. In conclusion, despite the diversity and evolutionary alterations of Actinopterygii brains, the diversity of the astroglial architecture is moderate. In contrast to Chondrichthyes and Amniotes; in Actinopterygii true astrocytes (stellate-shaped extraependymal cells) did not appear during evolution, and the expansion of GFAP-free areas was limited.

Keywords

References

  1. Neurobiology (Bp). 1993;1(1):47-54 [PMID: 8369799]
  2. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6249-6254 [PMID: 29760103]
  3. J Comp Neurol. 1981 May 1;198(1):13-35 [PMID: 6971881]
  4. Brain Res Bull. 2002 Feb-Mar 1;57(3-4):509-11 [PMID: 11923020]
  5. Brain Behav Evol. 1988;31(1):17-24 [PMID: 3334903]
  6. J Comp Neurol. 1991 Jun 15;308(3):340-55 [PMID: 1865005]
  7. Acta Histochem. 2008;110(6):433-50 [PMID: 18406450]
  8. J Comp Neurol. 2004 Feb 9;469(3):413-36 [PMID: 14730591]
  9. Brain Struct Funct. 2011 Jan;215(3-4):141-57 [PMID: 20976604]
  10. Exp Brain Res. 1989;78(1):147-63 [PMID: 2591509]
  11. J Comp Neurol. 1983 Aug 20;218(4):378-94 [PMID: 6619321]
  12. Anat Embryol (Berl). 2001 Jul;204(1):59-80 [PMID: 11506433]
  13. Mol Phylogenet Evol. 2018 Oct;127:781-799 [PMID: 29913311]
  14. J Comp Neurol. 1974 Mar 1;154(1):43-60 [PMID: 4815183]
  15. Mol Phylogenet Evol. 2001 Aug;20(2):275-85 [PMID: 11476635]
  16. J Hirnforsch. 1989;30(4):465-72 [PMID: 2794486]
  17. J Comp Neurol. 1974 Aug 1;156(3):255-76 [PMID: 4547525]
  18. BMC Evol Biol. 2017 Jul 6;17(1):162 [PMID: 28683774]
  19. J Neurocytol. 2000 Feb;29(2):119-28 [PMID: 11068340]
  20. J Comp Neurol. 2001 Mar 19;431(4):460-80 [PMID: 11223815]
  21. J Comp Neurol. 1982 Feb 20;205(2):128-38 [PMID: 7076888]
  22. J Comp Neurol. 1989 Jul 8;285(2):231-45 [PMID: 2760263]
  23. J Comp Neurol. 1977 Oct 1;175(3):287-300 [PMID: 903425]
  24. J Chem Neuroanat. 2008 Dec;36(3-4):239-50 [PMID: 18675898]
  25. Front Neuroanat. 2011 Jun 24;5:33 [PMID: 21738499]
  26. Z Zellforsch Mikrosk Anat. 1954;39(6):588-617 [PMID: 13206296]
  27. J Hirnforsch. 1992;33(4-5):487-97 [PMID: 1479189]
  28. Anat Embryol (Berl). 1998 Nov;198(5):409-33 [PMID: 9801060]
  29. J Comp Neurol. 1995 Aug 28;359(3):365-81 [PMID: 7499535]
  30. Cell Tissue Res. 1980;207(2):211-26 [PMID: 7388915]
  31. Brain Res Bull. 1982 Jul-Dec;9(1-6):189-204 [PMID: 6129036]
  32. J Comp Neurol. 1983 Apr 20;215(4):427-36 [PMID: 6408144]
  33. Glia. 1988;1(6):398-402 [PMID: 2976399]
  34. J Neurocytol. 1999 Aug;28(8):639-53 [PMID: 10851343]
  35. Neuroscience. 2012 May 17;210:416-30 [PMID: 22465441]
  36. Neuroscience. 1985 Sep;16(1):33-44 [PMID: 2423916]
  37. Front Neuroanat. 2020 Aug 14;14:49 [PMID: 32922269]
  38. Neurosci Lett. 1992 Jan 6;134(2):203-6 [PMID: 1589147]
  39. Brain Behav Evol. 2008;71(4):305-24 [PMID: 18446022]
  40. Neuroscience. 1992;48(2):249-83 [PMID: 1603322]
  41. J Comp Neurol. 2013 Jan 1;521(1):24-49 [PMID: 22628072]
  42. J Comp Neurol. 2002 Aug 12;450(1):73-93 [PMID: 12124768]
  43. Gene Expr Patterns. 2006 Oct;6(8):1007-13 [PMID: 16765104]
  44. Neurosci Lett. 1987 Jan 2;73(1):95-100 [PMID: 3561861]
  45. J Hirnforsch. 1990;31(1):51-63 [PMID: 2358654]
  46. Anat Embryol (Berl). 1994 May;189(5):421-34 [PMID: 7522421]
  47. J Neurosci. 1986 Feb;6(2):424-38 [PMID: 3512790]
  48. J Morphol. 1966 Aug;119(4):435-65 [PMID: 4165380]
  49. Anat Embryol (Berl). 1994 Jan;189(1):25-39 [PMID: 8192235]
  50. Anat Embryol (Berl). 1993 Apr;187(4):385-98 [PMID: 8512091]
  51. J Comp Neurol. 1978 Dec 1;182(3):495-516 [PMID: 721968]
  52. J Comp Neurol. 2010 Nov 1;518(21):4277-87 [PMID: 20853506]
  53. J Comp Neurol. 1993 Apr 8;330(2):221-37 [PMID: 8491869]
  54. J Neurosci. 1990 May;10(5):1600-14 [PMID: 2332800]
  55. Acta Morphol Neerl Scand. 1962;5:65-78 [PMID: 13938577]
  56. J Neurosci. 2001 Nov 15;21(22):8943-55 [PMID: 11698605]
  57. Brain Res. 1971 May 7;28(2):351-4 [PMID: 5113526]
  58. J Comp Neurol. 1985 Sep 1;239(1):75-88 [PMID: 3900154]
  59. Eur J Histochem. 2005 Apr-Jun;49(2):157-66 [PMID: 15967744]
  60. Prog Brain Res. 1967;25:1-93 [PMID: 4866554]
  61. Mol Phylogenet Evol. 2012 Apr;63(1):28-42 [PMID: 22209858]
  62. Brain Res. 1987 Sep 15;420(2):277-88 [PMID: 3676760]
  63. J Comp Neurol. 1991 Apr 1;306(1):156-92 [PMID: 2040726]
  64. J Neuropathol Exp Neurol. 1969 Oct;28(4):513-39 [PMID: 4310187]
  65. Cell Tissue Res. 2009 Dec;338(3):319-32 [PMID: 19865831]
  66. Brain Behav Evol. 2009;73(4):229-52 [PMID: 19546532]
  67. Glia. 1990;3(3):180-92 [PMID: 2141594]
  68. J Comp Neurol. 1993 Oct 1;336(1):77-95 [PMID: 8254115]
  69. Brain Res. 1998 Jan 26;782(1-2):105-12 [PMID: 9519254]
  70. Z Mikrosk Anat Forsch. 1971;83(1):65-89 [PMID: 4101959]
  71. Evol Dev. 2006 Mar-Apr;8(2):215-22 [PMID: 16509899]
  72. Neuroscience. 1990;35(1):9-30 [PMID: 2163034]
  73. Brain Behav Evol. 2003;61(3):113-47 [PMID: 12697955]
  74. Biol Rev Camb Philos Soc. 2016 Nov;91(4):950-981 [PMID: 26105527]
  75. J Hirnforsch. 1979;20(1):57-67 [PMID: 479577]
  76. Annu Rev Neurosci. 1981;4:301-50 [PMID: 7013637]
  77. Ann Anat. 2000 Sep;182(5):459-63 [PMID: 11035642]
  78. J Exp Zool. 2002 Sep 1;293(4):395-406 [PMID: 12210122]
  79. Brain Res. 1983 Dec;287(3):247-97 [PMID: 6362772]
  80. PLoS Curr. 2013 Apr 18;5: [PMID: 23653398]
  81. Anat Embryol (Berl). 1998 Sep;198(3):213-35 [PMID: 9764976]
  82. Glia. 1989;2(3):189-200 [PMID: 2526081]
  83. Z Mikrosk Anat Forsch. 1981;95(1):108-12 [PMID: 7234067]
  84. Brain Behav Evol. 1998;51(5):239-62 [PMID: 9587676]
  85. Brain Res Bull. 2008 Mar 18;75(2-4):191-205 [PMID: 18331871]
  86. Anat Embryol (Berl). 1978 May 31;153(1):67-83 [PMID: 655439]
  87. J Neurosci. 1985 Sep;5(9):2388-96 [PMID: 2863336]

Word Cloud

Created with Highcharts 10.0.0GFAPastroglialcerebellumeversionspeciesdiversitytelencephalontectumradialgliaActinopterygiistudyastrogliaactinopterygiandifferentnon-teleostsimmunohistochemicalglialproteinarchitecturegroupcontrastfoundincludingeglobusmotorevolutionaryareascells'fan-shape're-arrangementlayeredastrocytespresentpaperfirstcomparativeseveralphylogeneticalpositionsteleosts163basedstainingfibrillaryacidiccharacteristiccytoskeletalintermediaryfilamentmarkerquestionreflexeshighlargestvertebrateso-called'eversive'development'evagination'sarcopterygiitetrapodsSeveralbrainpartseitherequivalentstetrapodvertebratestoruslongitudinalisinferiornervivagirathershapesvisualizedapplyingDAKOpolyclonalanti-GFAPserumfocusedmainlyvisualorientationcoordinationchangesexpectedalsoinvestigatedpredominantelementstanycyteslongthinfiber-liketeleosttelencephalareflectsbichirstarletgarlesspronouncedformprocessesimmunostainedOstariophysiEuteleosteiextenddeepsegmentsBergmann-likeexceptCyprinidaevagallobeuniquelyenlargedCyprininaecorrespondingsystemleftalmostfreezonessensoryneuronsconclusiondespitealterationsbrainsmoderateChondrichthyesAmniotestruestellate-shapedextraependymalappearevolutionexpansionGFAP-freelimitedEvolutionaryModificationsModerateAstroglialSystemRevealedImmunohistochemistry

Similar Articles

Cited By