An integrated path for spatial capture-recapture and animal movement modeling.

Brett T McClintock, Briana Abrahms, Richard B Chandler, Paul B Conn, Sarah J Converse, Robert L Emmet, Beth Gardner, Nathan J Hostetter, Devin S Johnson
Author Information
  1. Brett T McClintock: Marine Mammal Laboratory, NOAA-NMFS Alaska Fisheries Science Center, Seattle, Washington, USA.
  2. Briana Abrahms: Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, Washington, USA.
  3. Richard B Chandler: Warnell School of Forestry and Natural Resources, University of Georgia, 180 E. Green St., Athens, Georgia, USA.
  4. Paul B Conn: Marine Mammal Laboratory, NOAA-NMFS Alaska Fisheries Science Center, Seattle, Washington, USA.
  5. Sarah J Converse: U.S. Geological Survey, Washington Cooperative Fish and Wildlife Research Unit, School of Environmental and Forest Sciences & School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, Washington, USA.
  6. Robert L Emmet: Quantitative Ecology and Resource Management, University of Washington, Seattle, Washington, USA.
  7. Beth Gardner: School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA.
  8. Nathan J Hostetter: Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA.
  9. Devin S Johnson: Marine Mammal Laboratory, NOAA-NMFS Alaska Fisheries Science Center, Seattle, Washington, USA.

Abstract

Ecologists and conservation biologists increasingly rely on spatial capture-recapture (SCR) and movement modeling to study animal populations. Historically, SCR has focused on population-level processes (e.g., vital rates, abundance, density, and distribution), whereas animal movement modeling has focused on the behavior of individuals (e.g., activity budgets, resource selection, migration). Even though animal movement is clearly a driver of population-level patterns and dynamics, technical and conceptual developments to date have not forged a firm link between the two fields. Instead, movement modeling has typically focused on the individual level without providing a coherent scaling from individual- to population-level processes, whereas SCR has typically focused on the population level while greatly simplifying the movement processes that give rise to the observations underlying these models. In our view, the integration of SCR and animal movement modeling has tremendous potential for allowing ecologists to scale up from individuals to populations and advancing the types of inferences that can be made at the intersection of population, movement, and landscape ecology. Properly accounting for complex animal movement processes can also potentially reduce bias in estimators of population-level parameters, thereby improving inferences that are critical for species conservation and management. This introductory article to the Special Feature reviews recent advances in SCR and animal movement modeling, establishes a common notation, highlights potential advantages of linking individual-level (Lagrangian) movements to population-level (Eulerian) processes, and outlines a general conceptual framework for the integration of movement and SCR models. We then identify important avenues for future research, including key challenges and potential pitfalls in the developments and applications that lie ahead.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19052-9 [PMID: 19060196]
  2. Ecology. 2019 Feb;100(2):e02580 [PMID: 30601582]
  3. Int Stat Rev. 2020 Aug;88(2):441-461 [PMID: 32834401]
  4. J R Soc Interface. 2018 Jun;15(143): [PMID: 29875281]
  5. Conserv Biol. 2019 Apr;33(2):239-249 [PMID: 30311266]
  6. Ecology. 2009 Dec;90(12):3554-65 [PMID: 20120822]
  7. Trends Ecol Evol. 2004 Jun;19(6):334-43 [PMID: 16701280]
  8. PLoS One. 2011;6(8):e22795 [PMID: 21931584]
  9. Mov Ecol. 2014 Oct 15;2(1):21 [PMID: 25709830]
  10. Biometrics. 2010 Mar;66(1):178-85 [PMID: 19397581]
  11. Ecol Evol. 2020 Oct 09;10(20):e6822 [PMID: 33145005]
  12. Ecology. 2022 Oct;103(10):e3473 [PMID: 34270790]
  13. Biometrics. 2008 Jun;64(2):377-85 [PMID: 17970815]
  14. Ecology. 2009 Apr;90(4):1106-15 [PMID: 19449704]
  15. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2157-62 [PMID: 20566493]
  16. Ecology. 2007 Sep;88(9):2354-63 [PMID: 17918412]
  17. Ecology. 2015 Oct;96(10):2590-7 [PMID: 26649380]
  18. Biometrics. 2013 Sep;69(3):766-75 [PMID: 23845216]
  19. Ecology. 2008 Aug;89(8):2281-9 [PMID: 18724738]
  20. Science. 2015 Jun 12;348(6240):1255642 [PMID: 26068859]
  21. Ecology. 2021 Mar;102(3):e03262 [PMID: 33244753]
  22. Ecology. 2013 Feb;94(2):287-94 [PMID: 23691647]
  23. PLoS One. 2016 May 19;11(5):e0155066 [PMID: 27195799]
  24. Mov Ecol. 2021 Feb 24;9(1):8 [PMID: 33627189]
  25. Ecology. 2011 Feb;92(2):526-8 [PMID: 21618931]
  26. J R Soc Interface. 2014 Jul 6;11(96): [PMID: 24829284]
  27. Ecology. 2009 Oct;90(10):2676-82 [PMID: 19886477]
  28. PLoS One. 2010 Jan 15;5(1):e8677 [PMID: 20090942]
  29. Ecol Evol. 2020 Dec 02;10(24):13968-13979 [PMID: 33391695]
  30. Ecology. 2011 Dec;92(12):2202-7 [PMID: 22352159]
  31. Ecology. 2010 Nov;91(11):3376-83 [PMID: 21141198]
  32. Ecology. 2018 Mar;99(3):524-535 [PMID: 29369341]
  33. Ecology. 2014 Aug;95(8):2316-23 [PMID: 25230481]
  34. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2289-301 [PMID: 20566505]
  35. Ecol Evol. 2019 Feb 05;9(2):880-890 [PMID: 30766677]
  36. Biometrics. 2018 Jun;74(2):411-420 [PMID: 28834536]
  37. Science. 2014 Apr 4;344(6179):1242552 [PMID: 24700862]
  38. PLoS One. 2012;7(4):e34575 [PMID: 22539949]
  39. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2303-12 [PMID: 20566506]
  40. Ecol Evol. 2018 Sep 27;8(20):10336-10344 [PMID: 30397470]
  41. J Anim Ecol. 2013 Nov;82(6):1155-64 [PMID: 23800202]
  42. Mov Ecol. 2017 May 10;5:13 [PMID: 28496983]
  43. Ecology. 2008 May;89(5):1208-15 [PMID: 18543615]
  44. PLoS One. 2017 May 17;12(5):e0176966 [PMID: 28520796]
  45. Biometrics. 2019 Dec;75(4):1345-1355 [PMID: 31045249]
  46. Science. 2015 Jun 12;348(6240):aaa2478 [PMID: 26068858]
  47. J Anim Ecol. 2012 Jul;81(4):738-46 [PMID: 22348740]
  48. PLoS One. 2017 Oct 3;12(10):e0185588 [PMID: 28973034]
  49. Biometrics. 2020 Jun;76(2):392-402 [PMID: 31517386]
  50. J Anim Ecol. 2018 Jul;87(4):1116-1125 [PMID: 29577275]
  51. Ecology. 2019 Jan;100(1):e02452 [PMID: 30047993]
  52. Biometrics. 2008 Dec;64(4):1196-206 [PMID: 18325073]
  53. Mov Ecol. 2014 Feb 07;2(1):4 [PMID: 25520815]
  54. Ecology. 2013 Jul;94(7):1464-71 [PMID: 23951706]
  55. PLoS One. 2014 Feb 05;9(2):e88025 [PMID: 24505361]
  56. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5582-5587 [PMID: 30804188]
  57. Ecology. 2008 Feb;89(2):542-54 [PMID: 18409443]
  58. J Anim Ecol. 2014 Sep;83(5):1234-43 [PMID: 24460723]
  59. Ecol Lett. 2017 Jan;20(1):3-18 [PMID: 28000433]
  60. Ecology. 2013 Mar;94(3):553-9 [PMID: 23687880]
  61. J Anim Ecol. 2012 Jul;81(4):756-69 [PMID: 22320218]
  62. PLoS One. 2015 Jun 18;10(6):e0129020 [PMID: 26087321]
  63. Ecology. 2012 Nov;93(11):2336-42 [PMID: 23236905]
  64. Ecology. 2009 Nov;90(11):3233-44 [PMID: 19967878]
  65. Ecol Lett. 2019 Feb;22(2):377-389 [PMID: 30548152]

MeSH Term

Animals
Ecology
Movement
Population Density

Word Cloud

Created with Highcharts 10.0.0movementanimalSCRmodelingpopulation-levelprocessespopulationfocusedspatialcapture-recapturepotentialecologyconservationpopulationsegdensitydistributionwhereasindividualsdynamicsconceptualdevelopmentstypicallylevelmodelsintegrationinferencescanintegratedEcologistsbiologistsincreasinglyrelystudyHistoricallyvitalratesabundancebehavioractivitybudgetsresourceselectionmigrationEventhoughclearlydriverpatternstechnicaldateforgedfirmlinktwofieldsInsteadindividualwithoutprovidingcoherentscalingindividual-greatlysimplifyinggiveriseobservationsunderlyingviewtremendousallowingecologistsscaleadvancingtypesmadeintersectionlandscapeProperlyaccountingcomplexalsopotentiallyreducebiasestimatorsparameterstherebyimprovingcriticalspeciesmanagementintroductoryarticleSpecialFeaturereviewsrecentadvancesestablishescommonnotationhighlightsadvantageslinkingindividual-levelLagrangianmovementsEulerianoutlinesgeneralframeworkidentifyimportantavenuesfutureresearchincludingkeychallengespitfallsapplicationslieaheadpathmodelmark-recapture

Similar Articles

Cited By (7)