Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes.

Zhijie Wang, Yanyan Wang, Chao Wu, Wei Kong Pang, Jianfeng Mao, Zaiping Guo
Author Information
  1. Zhijie Wang: Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong NSW 2522 Australia. ORCID
  2. Yanyan Wang: Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong NSW 2522 Australia.
  3. Chao Wu: Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong NSW 2522 Australia.
  4. Wei Kong Pang: Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong NSW 2522 Australia. ORCID
  5. Jianfeng Mao: Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong NSW 2522 Australia. ORCID
  6. Zaiping Guo: Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong NSW 2522 Australia. ORCID

Abstract

Traditional Li ion batteries based on intercalation-type anodes have been approaching their theoretical limitations in energy density. Replacing the traditional anode with metallic Li has been regarded as the ultimate strategy to develop next-generation high-energy-density Li batteries. Unfortunately, the practical application of Li metal batteries has been hindered by Li dendrite growth, unstable Li/electrolyte interfaces, and Li pulverization during battery cycling. Interfacial modification can effectively solve these challenges and nitrided interfaces stand out among other functional layers because of their impressive effects on regulating Li flux distribution, facilitating Li diffusion through the solid-electrolyte interphase, and passivating the active surface of Li metal electrodes. Although various designs for nitrided interfaces have been put forward in the last few years, there is no paper that specialized in reviewing these advances and discussing prospects. In consideration of this, we make a systematic summary and give our comments based on our understanding. In addition, a comprehensive perspective on the future development of nitrided interfaces and rational Li/electrolyte interface design for Li metal electrodes is included.

References

  1. Chem Rev. 2017 Aug 9;117(15):10403-10473 [PMID: 28753298]
  2. Nature. 2001 Nov 15;414(6861):359-67 [PMID: 11713543]
  3. ACS Appl Mater Interfaces. 2019 Nov 13;11(45):42261-42270 [PMID: 31657890]
  4. J Am Chem Soc. 2019 Jun 12;141(23):9422-9429 [PMID: 31117672]
  5. Chem Rev. 2020 Jul 22;120(14):6783-6819 [PMID: 32022546]
  6. Adv Sci (Weinh). 2015 Nov 17;3(3):1500213 [PMID: 27774393]
  7. Chem Rev. 2004 Oct;104(10):4303-417 [PMID: 15669157]
  8. Adv Mater. 2019 Jan;31(4):e1806541 [PMID: 30515896]
  9. Adv Sci (Weinh). 2017 Feb 16;4(3):1600445 [PMID: 28331792]
  10. ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30992-30998 [PMID: 31385685]
  11. ACS Cent Sci. 2020 May 27;6(5):661-671 [PMID: 32490184]
  12. Adv Mater. 2021 Apr;33(14):e2008133 [PMID: 33656208]
  13. Adv Mater. 2021 Apr;33(13):e2006247 [PMID: 33630383]
  14. Chem Commun (Camb). 2020 Aug 25;56(68):9898-9900 [PMID: 32724993]
  15. Adv Mater. 2021 Feb;33(8):e2004128 [PMID: 33432664]
  16. Adv Mater. 2019 Mar;31(12):e1806532 [PMID: 30672032]
  17. Science. 2019 Nov 1;366(6465):645-648 [PMID: 31672899]
  18. Adv Mater. 2020 Sep;32(38):e2003920 [PMID: 32789959]
  19. Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1156-1161 [PMID: 29351993]
  20. Adv Mater. 2016 Mar 2;28(9):1853-8 [PMID: 26698171]
  21. Adv Mater. 2017 Mar;29(10): [PMID: 28032934]
  22. Nat Commun. 2018 Sep 7;9(1):3656 [PMID: 30194431]
  23. J Am Chem Soc. 2013 Mar 20;135(11):4450-6 [PMID: 23448508]
  24. Angew Chem Int Ed Engl. 2018 Oct 22;57(43):14055-14059 [PMID: 30094909]
  25. Nano Lett. 2015 Sep 9;15(9):6149-54 [PMID: 26237519]
  26. Adv Mater. 2020 Feb;32(7):e1905573 [PMID: 31930614]
  27. Nat Commun. 2020 Aug 21;11(1):4188 [PMID: 32826904]
  28. Nature. 2008 Feb 7;451(7179):652-7 [PMID: 18256660]
  29. Adv Mater. 2020 Jun;32(24):e2001740 [PMID: 32390225]
  30. Nat Commun. 2019 Mar 25;10(1):1363 [PMID: 30911010]
  31. Front Chem. 2019 Aug 20;7:572 [PMID: 31482086]
  32. Sci Adv. 2018 Feb 23;4(2):eaar4410 [PMID: 29507888]
  33. Angew Chem Int Ed Engl. 2020 Dec 1;59(49):22194-22201 [PMID: 32841474]
  34. Angew Chem Int Ed Engl. 2020 Feb 24;59(9):3505-3510 [PMID: 31880025]
  35. Adv Mater. 2019 Jul;31(29):e1901662 [PMID: 31155762]
  36. Adv Sci (Weinh). 2020 Oct 11;7(22):2002212 [PMID: 33240768]
  37. Angew Chem Int Ed Engl. 2020 Feb 17;59(8):3252-3257 [PMID: 31756011]
  38. ACS Cent Sci. 2018 Jan 24;4(1):97-104 [PMID: 29392181]
  39. Adv Mater. 2020 Oct;32(42):e2004793 [PMID: 32930460]
  40. Nanomicro Lett. 2020 Aug 28;12(1):176 [PMID: 34138174]
  41. Nat Nanotechnol. 2019 Nov;14(11):1042-1047 [PMID: 31611656]
  42. Angew Chem Int Ed Engl. 2020 Aug 24;59(35):14935-14941 [PMID: 32410377]
  43. Small. 2019 Jan;15(3):e1803858 [PMID: 30548381]
  44. Angew Chem Int Ed Engl. 2020 Jan 27;59(5):2055-2060 [PMID: 31729145]
  45. Angew Chem Int Ed Engl. 2019 Jun 3;58(23):7802-7807 [PMID: 30977231]
  46. Nat Nanotechnol. 2018 Aug;13(8):715-722 [PMID: 30013215]
  47. Nat Nanotechnol. 2017 Mar 7;12(3):194-206 [PMID: 28265117]
  48. Nat Commun. 2015 Jun 17;6:7436 [PMID: 26081242]
  49. Adv Sci (Weinh). 2016 Nov 03;4(2):1600400 [PMID: 28251057]
  50. Angew Chem Int Ed Engl. 2018 May 4;57(19):5301-5305 [PMID: 29465827]
  51. ACS Appl Mater Interfaces. 2017 Mar 29;9(12):10360-10365 [PMID: 28291328]
  52. Nano Lett. 2019 Dec 11;19(12):8780-8786 [PMID: 31687827]
  53. Chem Soc Rev. 2020 Jun 21;49(12):3806-3833 [PMID: 32478786]
  54. Chem Rev. 2018 Dec 12;118(23):11433-11456 [PMID: 30500179]
  55. ACS Appl Mater Interfaces. 2020 Mar 4;12(9):11265-11272 [PMID: 32045201]
  56. Proc Natl Acad Sci U S A. 2018 May 29;115(22):5676-5680 [PMID: 29760091]
  57. Adv Mater. 2019 Jul;31(27):e1900342 [PMID: 31095799]
  58. Chem Soc Rev. 2020 Oct 19;49(20):7284-7300 [PMID: 32939527]
  59. ACS Appl Mater Interfaces. 2019 Feb 6;11(5):5159-5167 [PMID: 30628438]
  60. Angew Chem Int Ed Engl. 2021 Feb 15;60(7):3661-3671 [PMID: 33166432]
  61. ACS Nano. 2020 Feb 25;14(2):1866-1878 [PMID: 31967456]
  62. Sci Adv. 2019 Feb 15;5(2):eaau7728 [PMID: 30793031]
  63. ACS Appl Mater Interfaces. 2020 Jan 8;12(1):627-636 [PMID: 31820917]
  64. Angew Chem Int Ed Engl. 2021 May 17;60(21):11718-11724 [PMID: 33751713]

Word Cloud

Created with Highcharts 10.0.0LiinterfacesmetalnitridedbatterieselectrodesbasedLi/electrolyteTraditionalionintercalation-typeanodesapproachingtheoreticallimitationsenergydensityReplacingtraditionalanodemetallicregardedultimatestrategydevelopnext-generationhigh-energy-densityUnfortunatelypracticalapplicationhindereddendritegrowthunstablepulverizationbatterycyclingInterfacialmodificationcaneffectivelysolvechallengesstandamongfunctionallayersimpressiveeffectsregulatingfluxdistributionfacilitatingdiffusionsolid-electrolyteinterphasepassivatingactivesurfaceAlthoughvariousdesignsputforwardlastyearspaperspecializedreviewingadvancesdiscussingprospectsconsiderationmakesystematicsummarygivecommentsunderstandingadditioncomprehensiveperspectivefuturedevelopmentrationalinterfacedesignincludedConstructingstabilizingliquidelectrolytes

Similar Articles

Cited By