Juvenile Huntington's Disease and Other PolyQ Diseases, Update on Neurodevelopmental Character and Comparative Bioinformatic Review of Transcriptomic and Proteomic Data.

Karolina Świtońska-Kurkowska, Bart Krist, Joanna Delimata, Maciej Figiel
Author Information
  1. Karolina Świtońska-Kurkowska: Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
  2. Bart Krist: Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
  3. Joanna Delimata: Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
  4. Maciej Figiel: Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.

Abstract

Polyglutamine (PolyQ) diseases are neurodegenerative disorders caused by the CAG repeat expansion mutation in affected genes resulting in toxic proteins containing a long chain of glutamines. There are nine PolyQ diseases: Huntington's disease (HD), spinocerebellar ataxias (types 1, 2, 3, 6, 7, and 17), dentatorubral-pallidoluysian atrophy (DRPLA), and spinal bulbar muscular atrophy (SBMA). In general, longer CAG expansions and longer glutamine tracts lead to earlier disease presentations in PolyQ patients. Rarely, cases of extremely long expansions are identified for PolyQ diseases, and they consistently lead to juvenile or sometimes very severe infantile-onset polyQ syndromes. In apparent contrast to the very long CAG tracts, shorter CAGs and PolyQs in proteins seems to be the evolutionary factor enhancing human cognition. Therefore, polyQ tracts in proteins can be modifiers of brain development and disease drivers, which contribute neurodevelopmental phenotypes in juvenile- and adult-onset PolyQ diseases. Therefore we performed a bioinformatics review of published RNAseq polyQ expression data resulting from the presence of polyQ genes in search of neurodevelopmental expression patterns and comparison between diseases. The expression data were collected from cell types reflecting stages of development such as iPSC, neuronal stem cell, neurons, but also the adult patients and models for PolyQ disease. In addition, we extended our bioinformatic transcriptomic analysis by proteomics data. We identified a group of 13 commonly downregulated genes and proteins in HD mouse models. Our comparative bioinformatic review highlighted several (neuro)developmental pathways and genes identified within PolyQ diseases and mouse models responsible for neural growth, synaptogenesis, and synaptic plasticity.

Keywords

References

  1. Cell. 1993 Mar 26;72(6):971-83 [PMID: 8458085]
  2. Sci Rep. 2018 Jul 2;8(1):9925 [PMID: 29967375]
  3. J Biol Chem. 2009 Mar 20;284(12):7455-64 [PMID: 19106096]
  4. Cell Stem Cell. 2012 Aug 3;11(2):264-78 [PMID: 22748968]
  5. Am J Med Genet A. 2009 Feb 15;149A(4):598-601 [PMID: 19253382]
  6. Cell Rep. 2018 Oct 23;25(4):1081-1096.e6 [PMID: 30355486]
  7. Lancet Neurol. 2018 Nov;17(11):986-993 [PMID: 30243861]
  8. Hum Mol Genet. 2015 Nov 1;24(21):6066-79 [PMID: 26264576]
  9. Neurotherapeutics. 2019 Oct;16(4):979-998 [PMID: 31792895]
  10. Nat Commun. 2019 May 1;10(1):2000 [PMID: 31043608]
  11. Elife. 2018 Dec 03;7: [PMID: 30507379]
  12. J Neurosci. 2008 Oct 15;28(42):10720-33 [PMID: 18923047]
  13. J Biol Chem. 2006 Apr 21;281(16):11066-73 [PMID: 16473877]
  14. Brain Res Bull. 2012 Jun 1;88(2-3):210-22 [PMID: 21272615]
  15. Cell Mol Life Sci. 2009 Feb;66(3):437-46 [PMID: 18953689]
  16. Hum Brain Mapp. 2020 Jan;41(1):256-269 [PMID: 31532053]
  17. J Child Neurol. 2014 Jan;29(1):139-44 [PMID: 24300164]
  18. J Clin Invest. 2018 Jun 1;128(6):2252-2265 [PMID: 29533923]
  19. Brain Dev. 1991 Jul;13(4):266-9 [PMID: 1957976]
  20. Nat Rev Neurosci. 2005 Apr;6(4):267-76 [PMID: 15803158]
  21. Drug Discov Today. 2014 Jul;19(7):956-62 [PMID: 24662036]
  22. Am J Hum Genet. 2019 Mar 7;104(3):542-552 [PMID: 30827498]
  23. Neuron. 2020 Feb 19;105(4):630-644.e9 [PMID: 31859031]
  24. Bioinformatics. 2009 Apr 15;25(8):1091-3 [PMID: 19237447]
  25. J Child Neurol. 2008 Sep;23(9):999-1001 [PMID: 18344458]
  26. Genet Mol Biol. 2020 Aug 21;43(3):e20190325 [PMID: 32870233]
  27. Arch Neurol. 2007 Jun;64(6):813-9 [PMID: 17562929]
  28. Brain. 1994 Jun;117 ( Pt 3):445-60 [PMID: 8032856]
  29. J Neurol Sci. 2015 Jul 15;354(1-2):118-21 [PMID: 25972113]
  30. Neurology. 1998 Oct;51(4):1081-6 [PMID: 9781533]
  31. Free Radic Biol Med. 2016 Aug;97:427-440 [PMID: 27394174]
  32. Acta Neuropathol Commun. 2020 Feb 18;8(1):19 [PMID: 32070434]
  33. Rare Dis. 2016 Aug 12;4(1):e1223580 [PMID: 28032013]
  34. J Neurol. 2001 Oct;248(10):911-4 [PMID: 11697534]
  35. Ann Neurol. 2007 Jun;61(6):607-10 [PMID: 17474109]
  36. Neurotherapeutics. 2019 Oct;16(4):1074-1096 [PMID: 31432449]
  37. Open Biol. 2018 Dec 5;8(12): [PMID: 30518638]
  38. Ann Neurol. 2004 Sep;56(3):448-52 [PMID: 15349877]
  39. Neurotherapeutics. 2019 Oct;16(4):928-947 [PMID: 31686397]
  40. Mov Disord. 2010 Aug 15;25(11):1694-700 [PMID: 20589872]
  41. Front Cell Neurosci. 2019 Jan 18;12:528 [PMID: 30713489]
  42. Ann Neurol. 2010 Mar;67(3):291-300 [PMID: 20373340]
  43. Neurology. 2005 Apr 26;64(8):1458-60 [PMID: 15851746]
  44. J Clin Neurosci. 2010 Jun;17(6):751-5 [PMID: 20359894]
  45. Hum Mol Genet. 1998 Feb;7(2):171-6 [PMID: 9425223]
  46. Neurology. 2001 Jan 23;56(2):277-8 [PMID: 11160976]
  47. Neurology. 2003 Nov 25;61(10):1441-3 [PMID: 14638975]
  48. Hum Mol Genet. 2015 Sep 1;24(17):4780-91 [PMID: 26034136]
  49. Mol Cytogenet. 2013 Jan 17;6(1):4 [PMID: 23324214]
  50. Anat Rec. 2002 Aug 1;267(4):261-76 [PMID: 12124904]
  51. Neurogenetics. 2016 Apr;17(2):107-13 [PMID: 26780339]
  52. Dis Model Mech. 2015 Sep;8(9):1047-57 [PMID: 26092128]
  53. Nature. 2008 Apr 10;452(7188):713-8 [PMID: 18337722]
  54. Neuropsychol Rev. 2010 Dec;20(4):327-48 [PMID: 21042938]
  55. Cell Rep. 2017 May 2;19(5):919-927 [PMID: 28467905]
  56. Lancet Neurol. 2018 Nov;17(11):932-933 [PMID: 30243863]
  57. Wiley Interdiscip Rev RNA. 2018 Nov;9(6):e1488 [PMID: 29869836]
  58. Nat Neurosci. 2017 May;20(5):648-660 [PMID: 28319609]
  59. Hum Mol Genet. 2012 Sep 1;21(17):3883-95 [PMID: 22678061]
  60. Mol Cytogenet. 2012 Apr 05;5:17 [PMID: 22480366]
  61. J Neurosci Res. 2017 Jan 2;95(1-2):398-408 [PMID: 27870408]
  62. Bioinformatics. 2013 Mar 1;29(5):661-3 [PMID: 23325622]
  63. Lancet Neurol. 2017 Jan;16(1):88-96 [PMID: 27979358]
  64. Neurology. 2011 Sep 13;77(11):1055-60 [PMID: 21880993]
  65. Front Cell Neurosci. 2017 Dec 05;11:384 [PMID: 29259543]
  66. Acta Neuropathol. 1998 Nov;96(5):502-8 [PMID: 9829814]
  67. Mol Neurobiol. 2012 Oct;46(2):393-429 [PMID: 22956270]
  68. Neuron. 2013 Jan 9;77(1):19-34 [PMID: 23312513]
  69. Hum Mol Genet. 1999 Oct;8(11):2047-53 [PMID: 10484774]
  70. Nat Protoc. 2016 Oct;11(10):1889-907 [PMID: 27606777]
  71. Neurology. 2006 Oct 10;67(7):1265-7 [PMID: 17030763]
  72. Neuron. 2016 Mar 2;89(5):910-26 [PMID: 26938440]
  73. Eur J Hum Genet. 2013 Jun;21(6):626-9 [PMID: 23047744]
  74. Lancet. 1970 Oct 31;2(7679):937 [PMID: 4097325]
  75. Neurobiol Dis. 2012 May;46(2):336-50 [PMID: 22342974]
  76. Acta Neuropathol. 1998 May;95(5):479-82 [PMID: 9600594]
  77. Nat Genet. 1997 Jan;15(1):62-9 [PMID: 8988170]
  78. Nat Genet. 2017 Apr;49(4):527-536 [PMID: 28288114]
  79. Nat Commun. 2016 Nov 23;7:13583 [PMID: 27876793]
  80. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  81. Nat Commun. 2020 Feb 27;11(1):1101 [PMID: 32107387]
  82. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  83. Cell Stem Cell. 2012 Aug 3;11(2):253-63 [PMID: 22748967]
  84. Neuromuscul Disord. 2014 Nov;24(11):978-81 [PMID: 25047668]
  85. J Biol Chem. 2009 Mar 20;284(12):7425-9 [PMID: 18957430]
  86. Am J Med Genet. 1998 Oct 12;79(5):383-7 [PMID: 9779806]
  87. EMBO Rep. 2014 Apr;15(4):351-64 [PMID: 24639559]
  88. Mol Neurobiol. 2018 Apr;55(4):3351-3371 [PMID: 28497201]
  89. Neurotherapeutics. 2019 Apr;16(2):263-286 [PMID: 30607747]
  90. J Huntingtons Dis. 2013;2(1):89-99 [PMID: 25063432]
  91. Mol Neurobiol. 2012 Oct;46(2):430-66 [PMID: 22944909]
  92. Neurochem Res. 2012 Dec;37(12):2805-13 [PMID: 22926577]
  93. Eur J Hum Genet. 2008 Feb;16(2):215-22 [PMID: 18043721]
  94. Cell Rep. 2018 May 15;23(7):2211-2224 [PMID: 29768217]
  95. Hum Mol Genet. 1998 Oct;7(11):1809-13 [PMID: 9736784]
  96. Nat Rev Neurosci. 2019 Jun;20(6):318-329 [PMID: 30874623]
  97. Ment Retard Dev Disabil Res Rev. 2001;7(3):153-7 [PMID: 11553930]
  98. Stem Cell Reports. 2015 Dec 8;5(6):1023-1038 [PMID: 26651603]
  99. J Cell Biol. 1985 Sep;101(3):1153-60 [PMID: 2993315]
  100. Nat Genet. 1994 Jan;6(1):14-8 [PMID: 8136826]
  101. Mol Neurodegener. 2016 Apr 14;11:27 [PMID: 27080129]
  102. Cerebellum. 2020 Apr;19(2):165-181 [PMID: 31898278]
  103. J Proteome Res. 2016 Sep 2;15(9):3266-83 [PMID: 27486686]
  104. Nat Genet. 1997 Sep;17(1):65-70 [PMID: 9288099]
  105. N Engl J Med. 1986 Nov 13;315(20):1267-76 [PMID: 2877396]
  106. J Comp Neurol. 2011 Oct 1;519(14):2779-802 [PMID: 21491429]
  107. Nat Biotechnol. 2019 Oct;37(10):1198-1208 [PMID: 31501559]
  108. Am J Hum Genet. 1997 Aug;61(2):336-46 [PMID: 9311738]
  109. Neuropathology. 2010 Oct;30(5):453-7 [PMID: 20500452]
  110. Hum Brain Mapp. 2010 Nov;31(11):1727-40 [PMID: 20336652]
  111. Front Mol Neurosci. 2017 Aug 08;10:253 [PMID: 28848389]
  112. Acta Neuropathol. 1982;58(1):48-54 [PMID: 7136516]
  113. J Proteome Res. 2014 Dec 5;13(12):5648-59 [PMID: 25316320]
  114. Front Cell Neurosci. 2016 May 02;10:110 [PMID: 27199664]
  115. Neurobiol Dis. 2020 Jul;141:104950 [PMID: 32439598]
  116. Brain. 2014 Sep;137(Pt 9):2444-55 [PMID: 24972706]
  117. Exp Cell Res. 2014 Feb 1;321(1):47-57 [PMID: 24157250]
  118. J Child Neurol. 2003 Jun;18(6):429-32 [PMID: 12886981]
  119. Clin Genet. 2003 Jul;64(1):70-3 [PMID: 12791042]
  120. Adv Exp Med Biol. 2018;1049:219-231 [PMID: 29427105]
  121. Sci Rep. 2019 Mar 5;9(1):3539 [PMID: 30837566]
  122. Bioinformatics. 2017 Sep 15;33(18):2938-2940 [PMID: 28645171]
  123. Mech Ageing Dev. 2006 Feb;127(2):208-12 [PMID: 16274727]
  124. Arch Neurol. 2002 Dec;59(12):1921-6 [PMID: 12470181]
  125. Neurodegener Dis Manag. 2013 Jun 1;3(3): [PMID: 24416077]
  126. Stem Cell Reports. 2020 Mar 10;14(3):406-419 [PMID: 32109367]
  127. Am J Med Genet A. 2004 Feb 1;124A(4):392-6 [PMID: 14735588]
  128. Hum Mol Genet. 2017 Aug 15;26(16):3069-3080 [PMID: 28525545]
  129. Neurology. 2019 Apr 23;92(17):e1939-e1947 [PMID: 30971481]
  130. Pediatr Radiol. 2018 Sep;48(10):1463-1471 [PMID: 29926145]
  131. Trends Genet. 2006 Oct;22(10):562-70 [PMID: 16911843]
  132. J Huntingtons Dis. 2017;6(4):337-348 [PMID: 29036832]
  133. Nat Genet. 1994 Jan;6(1):9-13 [PMID: 8136840]
  134. Elife. 2019 Apr 17;8: [PMID: 30994454]
  135. J Biol Chem. 2006 Sep 1;281(35):25577-87 [PMID: 16835239]
  136. Hum Mol Genet. 1998 May;7(5):913-8 [PMID: 9536097]
  137. Am J Med Genet. 2002 Jul 15;110(4):338-45 [PMID: 12116207]
  138. Nat Commun. 2014 Dec 18;5:5815 [PMID: 25519973]
  139. Cell Rep. 2019 Feb 26;26(9):2494-2508.e7 [PMID: 30811996]
  140. BMC Bioinformatics. 2011 Jan 26;12:35 [PMID: 21269502]
  141. Mol Cell Proteomics. 2019 Sep;18(9):1705-1720 [PMID: 31138642]
  142. Acta Neurol Scand. 2013 May;127(5):323-8 [PMID: 23216624]
  143. Neuroimage Clin. 2019;23:101913 [PMID: 31491822]
  144. Development. 2010 Jan;137(1):15-26 [PMID: 20023156]
  145. Nat Rev Neurosci. 2017 Oct;18(10):613-626 [PMID: 28855740]
  146. J Neurol Neurosurg Psychiatry. 2007 Nov;78(11):1209-12 [PMID: 17332050]
  147. Science. 2020 Aug 14;369(6505):787-793 [PMID: 32675289]
  148. EBioMedicine. 2018 May;31:47-53 [PMID: 29685790]

Word Cloud

Created with Highcharts 10.0.0PolyQdiseasesdiseasegenesproteinspolyQCAGlongtractsidentifiedreviewexpressiondatamodelsbioinformaticresultingHuntington'sHDspinocerebellartypesatrophyDRPLAlongerexpansionsleadpatientsjuvenileThereforedevelopmentneurodevelopmentalcellproteomicsmousePolyglutamineneurodegenerativedisorderscausedrepeatexpansionmutationaffectedtoxiccontainingchainglutaminesninediseases:ataxias1236717dentatorubral-pallidoluysianspinalbulbarmuscularSBMAgeneralglutamineearlierpresentationsRarelycasesextremelyconsistentlysometimessevereinfantile-onsetsyndromesapparentcontrastshorterCAGsPolyQsseemsevolutionaryfactorenhancinghumancognitioncanmodifiersbraindriverscontributephenotypesjuvenile-adult-onsetperformedbioinformaticspublishedRNAseqpresencesearchpatternscomparisoncollectedreflectingstagesiPSCneuronalstemneuronsalsoadultadditionextendedtranscriptomicanalysisgroup13commonlydownregulatedcomparativehighlightedseveralneurodevelopmentalpathwayswithinresponsibleneuralgrowthsynaptogenesissynapticplasticityJuvenileDiseaseDiseasesUpdateNeurodevelopmentalCharacterComparativeBioinformaticReviewTranscriptomicProteomicDataHuntington’sneurodevelopmentataxiatranscriptomics

Similar Articles

Cited By