The Central Role of Redox-Regulated Switch Proteins in Bacteria.

Rosi Fassler, Lisa Zuily, Nora Lahrach, Marianne Ilbert, Dana Reichmann
Author Information
  1. Rosi Fassler: Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel.
  2. Lisa Zuily: Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France.
  3. Nora Lahrach: Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France.
  4. Marianne Ilbert: Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France.
  5. Dana Reichmann: Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel.

Abstract

Bacteria possess the ability to adapt to changing environments. To enable this, cells use reversible post-translational modifications on key proteins to modulate their behavior, metabolism, defense mechanisms and adaptation of bacteria to stress. In this review, we focus on bacterial protein switches that are activated during exposure to oxidative stress. Such protein switches are triggered by either exogenous reactive oxygen species (ROS) or endogenous ROS generated as by-products of the aerobic lifestyle. Both thiol switches and metal centers have been shown to be the primary targets of ROS. Cells take advantage of such reactivity to use these reactive sites as redox sensors to detect and combat oxidative stress conditions. This in turn may induce expression of genes involved in antioxidant strategies and thus protect the proteome against stress conditions. We further describe the well-characterized mechanism of selected proteins that are regulated by redox switches. We highlight the diversity of mechanisms and functions (as well as common features) across different switches, while also presenting integrative methodologies used in discovering new members of this family. Finally, we point to future challenges in this field, both in uncovering new types of switches, as well as defining novel additional functions.

Keywords

References

  1. Annu Rev Microbiol. 2015;69:93-108 [PMID: 26070785]
  2. J Biol Chem. 1996 Feb 2;271(5):2762-8 [PMID: 8576252]
  3. Int J Med Microbiol. 2020 Jan;310(1):151359 [PMID: 31585716]
  4. Antioxid Redox Signal. 2012 Nov 1;17(9):1201-14 [PMID: 22257022]
  5. Cell. 2007 Sep 7;130(5):797-810 [PMID: 17803904]
  6. J Biol Chem. 2013 Sep 13;288(37):26489-96 [PMID: 23861395]
  7. Transcription. 2012 Mar-Apr;3(2):63-7 [PMID: 22414752]
  8. Front Microbiol. 2018 Jun 29;9:1398 [PMID: 30008703]
  9. Nat Commun. 2018 Apr 20;9(1):1581 [PMID: 29679077]
  10. Nat Rev Microbiol. 2009 Jan;7(1):25-35 [PMID: 19079350]
  11. Cell. 2002 May 3;109(3):383-96 [PMID: 12015987]
  12. Cell. 2001 Apr 6;105(1):103-13 [PMID: 11301006]
  13. J Bacteriol. 2002 Jun;184(12):3276-86 [PMID: 12029044]
  14. Biol Chem. 2015 May;396(5):415-44 [PMID: 25720121]
  15. Proteomics Clin Appl. 2016 Dec;10(12):1159-1177 [PMID: 27666938]
  16. Front Microbiol. 2015 Mar 16;6:187 [PMID: 25852656]
  17. Antioxid Redox Signal. 2011 Mar 15;14(6):1049-63 [PMID: 20626317]
  18. Nat Struct Mol Biol. 2007 Jun;14(6):556-63 [PMID: 17515905]
  19. Mol Biosyst. 2010 Feb;6(2):316-23 [PMID: 20094649]
  20. Nat Biotechnol. 2013 Feb;31(2):160-5 [PMID: 23292609]
  21. Circ Res. 2013 Jan 18;112(2):382-92 [PMID: 23329793]
  22. J Bacteriol. 2001 Aug;183(15):4405-12 [PMID: 11443074]
  23. Trends Biochem Sci. 2015 Aug;40(8):435-45 [PMID: 26067716]
  24. Mol Microbiol. 1995 Jun;16(5):835-45 [PMID: 7476182]
  25. Free Radic Biol Med. 2002 Jul 1;33(1):15-28 [PMID: 12086678]
  26. Mol Biosyst. 2017 May 2;13(5):816-829 [PMID: 28357434]
  27. Neurotoxicology. 1994 Spring;15(1):81-91 [PMID: 8090365]
  28. Curr Opin Microbiol. 2019 Feb;47:20-25 [PMID: 30412828]
  29. J Bacteriol. 2018 Aug 10;200(17): [PMID: 29891640]
  30. Biochim Biophys Acta. 2014 Feb;1840(2):838-46 [PMID: 23567800]
  31. Cell. 1985 Jul;41(3):753-62 [PMID: 2988786]
  32. Int Microbiol. 2000 Mar;3(1):3-8 [PMID: 10963327]
  33. Proc Natl Acad Sci U S A. 1989 May;86(10):3484-8 [PMID: 2471187]
  34. Antioxid Redox Signal. 2020 Apr 20;32(12):803-816 [PMID: 31691575]
  35. Antioxid Redox Signal. 2006 May-Jun;8(5-6):835-46 [PMID: 16771674]
  36. J Biol Chem. 1995 Sep 8;270(36):20908-14 [PMID: 7673113]
  37. Cell. 2012 Mar 2;148(5):947-57 [PMID: 22385960]
  38. J Mol Biol. 2015 Apr 10;427(7):1549-63 [PMID: 25698115]
  39. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2092-7 [PMID: 17267605]
  40. Chem Rev. 2014 Apr 23;114(8):4366-469 [PMID: 24758379]
  41. J Biol Chem. 1997 Feb 21;272(8):5082-6 [PMID: 9030573]
  42. Front Microbiol. 2020 Aug 06;11:1844 [PMID: 32849441]
  43. Antioxid Redox Signal. 2015 Oct 9;24(4):173-185 [PMID: 26414804]
  44. Biol Chem. 2020 Nov 23;402(3):333-361 [PMID: 33544504]
  45. Antioxid Redox Signal. 2009 May;11(5):981-3 [PMID: 19186997]
  46. Nucleic Acids Res. 2011 Jul;39(12):5036-44 [PMID: 21398634]
  47. EMBO J. 2004 Jan 14;23(1):160-8 [PMID: 14685279]
  48. Mol Microbiol. 2008 May;68(4):978-86 [PMID: 18363800]
  49. Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7 [PMID: 16246122]
  50. Redox Biol. 2014 Jun 13;2:803-13 [PMID: 25009782]
  51. PLoS One. 2016 Jul 20;11(7):e0159837 [PMID: 27438061]
  52. Antioxid Redox Signal. 2017 Nov 20;27(15):1252-1267 [PMID: 28394178]
  53. J Bacteriol. 2003 Jan;185(1):243-53 [PMID: 12486061]
  54. Front Microbiol. 2018 Dec 11;9:3037 [PMID: 30619128]
  55. Nat Rev Microbiol. 2019 Nov;17(11):651-664 [PMID: 31485032]
  56. Curr Opin Microbiol. 2014 Oct;21:1-6 [PMID: 25078317]
  57. Cell. 2008 Nov 14;135(4):691-701 [PMID: 19013278]
  58. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8059-63 [PMID: 3534881]
  59. Antioxid Redox Signal. 2009 May;11(5):1029-46 [PMID: 19021503]
  60. FEMS Microbiol Rev. 1998 Dec;22(5):341-52 [PMID: 9990723]
  61. Front Microbiol. 2017 Mar 21;8:459 [PMID: 28377755]
  62. Mol Cell. 2005 Oct 7;20(1):131-41 [PMID: 16209951]
  63. Mol Microbiol. 2006 Sep;61(5):1211-9 [PMID: 16925555]
  64. J Bacteriol. 2008 Sep;190(17):5738-45 [PMID: 18586944]
  65. Antioxid Redox Signal. 2013 Nov 1;19(13):1539-605 [PMID: 23397885]
  66. Front Microbiol. 2016 Feb 16;7:184 [PMID: 26909079]
  67. Front Mol Neurosci. 2017 Jun 06;10:167 [PMID: 28634440]
  68. Redox Biol. 2019 Feb;21:101049 [PMID: 30639960]
  69. Science. 1998 Mar 13;279(5357):1718-21 [PMID: 9497290]
  70. J Bacteriol. 2005 Feb;187(3):1135-60 [PMID: 15659690]
  71. Biochemistry. 2011 Nov 8;50(44):9468-74 [PMID: 21988663]
  72. J Bacteriol. 1986 May;166(2):519-27 [PMID: 3516975]
  73. Biochim Biophys Acta. 2008 Apr;1783(4):641-50 [PMID: 18331844]
  74. J Vis Exp. 2018 Jun 7;(136): [PMID: 29939186]
  75. Biochim Biophys Acta. 2013 May;1830(5):3182-98 [PMID: 23075826]
  76. Nature. 2006 Mar 16;440(7082):363-7 [PMID: 16541078]
  77. Redox Biol. 2021 Jun;42:101901 [PMID: 33744200]
  78. Antioxid Redox Signal. 2018 Dec 20;29(18):1858-1871 [PMID: 28938859]
  79. Mol Cell. 2007 Nov 30;28(4):652-64 [PMID: 18042459]
  80. Free Radic Biol Med. 2016 Dec;101:356-366 [PMID: 27816612]
  81. Cell Metab. 2019 Dec 3;30(6):1152-1170.e13 [PMID: 31735592]
  82. J Biol Chem. 1996 Dec 27;271(52):33173-5 [PMID: 8969171]
  83. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10094-8 [PMID: 8816757]
  84. Nat Rev Microbiol. 2017 Jul;15(7):385-396 [PMID: 28420885]
  85. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6087-92 [PMID: 9177174]
  86. Redox Biol. 2014 Feb 03;2:395-9 [PMID: 24563858]
  87. Plant J. 2015 Jun;82(5):850-60 [PMID: 25892083]
  88. PLoS Genet. 2011 Jun;7(6):e1002106 [PMID: 21655090]
  89. Free Radic Biol Med. 2014 Jun;71:90-98 [PMID: 24642086]
  90. Infect Immun. 1995 Apr;63(4):1603-7 [PMID: 7890429]
  91. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E23-31 [PMID: 26677871]
  92. Trends Plant Sci. 2018 Dec;23(12):1068-1080 [PMID: 30279071]
  93. Proc Natl Acad Sci U S A. 2002 May 14;99(10):6690-5 [PMID: 11983871]
  94. Cell. 2002 Nov 27;111(5):607-10 [PMID: 12464172]
  95. Antioxid Redox Signal. 2018 Dec 20;29(18):1830-1840 [PMID: 28990402]
  96. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8743-8 [PMID: 17502599]
  97. J Biol Chem. 2013 Apr 19;288(16):11492-502 [PMID: 23471974]
  98. Naturwissenschaften. 2006 Jun;93(6):259-66 [PMID: 16555095]
  99. Mol Microbiol. 2006 Feb;59(4):1073-82 [PMID: 16430685]
  100. Sci Adv. 2015 Dec 04;1(11):e1501086 [PMID: 26665177]
  101. Antioxid Redox Signal. 2006 May-Jun;8(5-6):763-72 [PMID: 16771668]
  102. Nat Rev Microbiol. 2013 Jul;11(7):443-54 [PMID: 23712352]
  103. J Bacteriol. 2001 Jul;183(14):4134-41 [PMID: 11418552]
  104. Antioxidants (Basel). 2019 Mar 18;8(3): [PMID: 30889816]
  105. Chem Soc Rev. 2018 Jan 2;47(1):231-268 [PMID: 29242887]
  106. Gut Microbes. 2013 Nov-Dec;4(6):475-81 [PMID: 23811829]
  107. J Bacteriol. 2008 Feb;190(3):879-86 [PMID: 18055593]
  108. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13997-4001 [PMID: 9391141]
  109. Environ Microbiol. 2019 Feb;21(2):521-530 [PMID: 30307099]
  110. Sci Rep. 2017 Apr 26;7(1):1195 [PMID: 28446771]
  111. Proteomics. 2014 Mar;14(4-5):513-24 [PMID: 24339426]
  112. Front Microbiol. 2021 Mar 19;12:645477 [PMID: 33815333]
  113. PLoS Genet. 2020 Mar 12;16(3):e1008649 [PMID: 32163413]
  114. Anal Chem. 2016 Sep 20;88(18):9276-84 [PMID: 27541571]
  115. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8197-202 [PMID: 18287020]
  116. J Biol Chem. 2010 Apr 9;285(15):11243-51 [PMID: 20139072]

Word Cloud

Created with Highcharts 10.0.0stressswitchesoxidativeproteinsROSBacteriausemechanismsproteinreactivemetalredoxconditionsfunctionswellnewpossessabilityadaptchangingenvironmentsenablecellsreversiblepost-translationalmodificationskeymodulatebehaviormetabolismdefenseadaptationbacteriareviewfocusbacterialactivatedexposuretriggeredeitherexogenousoxygenspeciesendogenousgeneratedby-productsaerobiclifestylethiolcentersshownprimarytargetsCellstakeadvantagereactivitysitessensorsdetectcombatturnmayinduceexpressiongenesinvolvedantioxidantstrategiesthusprotectproteomedescribewell-characterizedmechanismselectedregulatedhighlightdiversitycommonfeaturesacrossdifferentalsopresentingintegrativemethodologiesuseddiscoveringmembersfamilyFinallypointfuturechallengesfielduncoveringtypesdefiningnoveladditionalCentralRoleRedox-RegulatedSwitchProteinsHsp33inducedoxidationprokaryotesredox-regulatedthiol-switches

Similar Articles

Cited By