Gold and Cobalt Oxide Nanoparticles Modified Poly-Propylene Poly-Ethylene Glycol Membranes in Poly (ε-Caprolactone) Conduits Enhance Nerve Regeneration in the Sciatic Nerve of Healthy Rats.

Derya Burcu Hazer Rosberg, Baki Hazer, Lena Stenberg, Lars B Dahlin
Author Information
  1. Derya Burcu Hazer Rosberg: Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden. ORCID
  2. Baki Hazer: Department of Aircraft Airflame Engine Maintenance, Kapadokya University, Ürgüp 50420, Turkey. ORCID
  3. Lena Stenberg: Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden. ORCID
  4. Lars B Dahlin: Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden. ORCID

Abstract

Reconstruction of nerve defects is a clinical challenge. Autologous nerve grafts as the gold standard treatment may result in an incomplete restoration of extremity function. Biosynthetic nerve conduits are studied widely, but still have limitations. Here, we reconstructed a 10 mm sciatic nerve defect in healthy rats and analyzed nerve regeneration in poly (ε-caprolactone) (PCL) conduits longitudinally divided by gold (Au) and gold-cobalt oxide (AuCoO) nanoparticles embedded in poly-propylene poly-ethylene glycol (PPEG) membranes (AuPPEG or AuCoOPPEG) and compared it with unmodified PPEG-membrane and hollow PCL conduits. After 21 days, we detected significantly better axonal outgrowth, together with higher numbers of activated Schwann cells (ATF3-labelled) and higher HSP27 expression, in reconstructed sciatic nerve and in corresponding dorsal root ganglia (DRG) in the AuPPEG and AuCoOPPEG groups; whereas the number of apoptotic Schwann cells (cleaved caspase 3-labelled) was significantly lower. Furthermore, numbers of activated and apoptotic Schwann cells in the regenerative matrix correlated with axonal outgrowth, whereas HSP27 expression in the regenerative matrix and in DRGs did not show any correlation with axonal outgrowth. We conclude that gold and cobalt-oxide nanoparticle modified membranes in conduits improve axonal outgrowth and increase the regenerative performance of conduits after nerve reconstruction.

Keywords

References

  1. Nanomaterials (Basel). 2017 Apr 24;7(4): [PMID: 28441776]
  2. EFORT Open Rev. 2017 May 11;2(5):158-170 [PMID: 28630754]
  3. Exp Neurol. 1988 Mar;99(3):655-63 [PMID: 3342848]
  4. Curr Mol Med. 2009 Sep;9(7):863-72 [PMID: 19860665]
  5. Mol Ther. 2015 Jun;23(6):993-1002 [PMID: 25807288]
  6. Biosens Bioelectron. 2014 Nov 15;61:500-5 [PMID: 24951919]
  7. BMC Neurosci. 2017 Jul 18;18(1):53 [PMID: 28720074]
  8. J Mol Neurosci. 2021 Apr;71(4):746-760 [PMID: 33029736]
  9. Tissue Eng. 2003 Jun;9(3):421-30 [PMID: 12857410]
  10. J Physiol. 2016 Jul 1;594(13):3521-31 [PMID: 26864683]
  11. Neural Regen Res. 2020 Aug;15(8):1421-1431 [PMID: 31997801]
  12. J Nanosci Nanotechnol. 2015 Dec;15(12):10091-107 [PMID: 26682455]
  13. BMC Neurosci. 2011 Jul 15;12:68 [PMID: 21756368]
  14. Sci Rep. 2018 Nov 13;8(1):16716 [PMID: 30425260]
  15. J Hand Surg Am. 2020 Dec;45(12):1148-1156 [PMID: 33010972]
  16. Microsurgery. 2016 Nov;36(8):664-671 [PMID: 25899554]
  17. Sci Total Environ. 2019 Sep 1;681:350-364 [PMID: 31117016]
  18. Int J Mol Sci. 2021 Aug 11;22(16): [PMID: 34445330]
  19. J Oral Maxillofac Surg. 2016 Nov;74(11):2327.e1-2327.e12 [PMID: 27542542]
  20. J Zhejiang Univ Sci B. 2013 Nov;14(11):993-1003 [PMID: 24190445]
  21. PLoS One. 2014 Aug 21;9(8):e105359 [PMID: 25144684]
  22. J Reconstr Microsurg. 2015 Jun;31(5):327-35 [PMID: 25893632]
  23. Biomaterials. 2013 Dec;34(38):9886-904 [PMID: 24050875]
  24. J Biol Inorg Chem. 2014 Mar;19(3):399-414 [PMID: 24445996]
  25. Tissue Eng Part A. 2011 Feb;17(3-4):475-86 [PMID: 20819000]
  26. Muscle Nerve. 2020 Jun;61(6):726-739 [PMID: 31883129]
  27. Curr Opin Neurobiol. 2016 Aug;39:38-46 [PMID: 27128880]
  28. Spine (Phila Pa 1976). 2016 Mar;41(6):E323-9 [PMID: 26571170]
  29. Acta Biomater. 2021 Feb;121:605-620 [PMID: 33259958]
  30. Health Qual Life Outcomes. 2019 Aug 30;17(1):148 [PMID: 31470865]
  31. Diabetes Care. 2014;37(3):e49-50 [PMID: 24558083]
  32. J Mater Sci Mater Med. 2018 Aug 17;29(9):134 [PMID: 30120577]
  33. Biomaterials. 2014 May;35(14):4266-77 [PMID: 24582378]
  34. J Hand Surg Am. 1997 Jan;22(1):99-106 [PMID: 9018621]
  35. Neuroscience. 2016 Oct 15;334:55-63 [PMID: 27497708]
  36. Biomaterials. 2016 Jan;76:33-51 [PMID: 26517563]
  37. J Clin Transl Endocrinol. 2017 Mar 20;8:15-21 [PMID: 29067254]
  38. Surg Neurol. 2008 Dec;70 Suppl 1:S1:9-18 [PMID: 18440619]
  39. Biochem Biophys Res Commun. 2009 Apr 24;382(1):6-8 [PMID: 19249290]
  40. J Hand Microsurg. 2018 Aug;10(2):61-65 [PMID: 30154617]
  41. BMC Neurosci. 2008 Sep 18;9:88 [PMID: 18801180]
  42. Neurol India. 2019 Jan-Feb;67(Supplement):S115-S117 [PMID: 30688244]
  43. Mol Cell Neurosci. 2005 Jun;29(2):269-82 [PMID: 15911351]
  44. Injury. 2018 Apr;49(4):766-774 [PMID: 29566987]
  45. J Invest Surg. 2016 Jun;29(3):167-74 [PMID: 26684915]
  46. Neuroreport. 2018 Jun 13;29(9):779-785 [PMID: 29659443]
  47. Neurosci Lett. 2012 Apr 25;515(1):34-8 [PMID: 22446192]
  48. Plast Reconstr Surg. 2014 Jun;133(6):1420-1430 [PMID: 24867724]
  49. J Neurosci Methods. 2014 Mar 30;225:32-41 [PMID: 24462622]
  50. Prog Neurobiol. 2019 Feb;173:102-121 [PMID: 30579784]
  51. Food Chem. 2021 May 15;344:128644 [PMID: 33246682]
  52. J Mater Sci Mater Med. 2009 Feb;20(2):489-95 [PMID: 18987957]
  53. Brain Behav. 2017 Jun 30;7(8):e00755 [PMID: 28828216]
  54. Int J Neurosci. 2014 Sep;124(9):685-96 [PMID: 24350993]
  55. Eur J Neurosci. 2016 Feb;43(3):463-73 [PMID: 26355640]
  56. Life Sci. 2020 Feb 15;243:117308 [PMID: 31954163]
  57. Biomaterials. 2015 Sep;62:66-75 [PMID: 26026910]
  58. Nano Lett. 2016 May 11;16(5):2916-20 [PMID: 26674672]
  59. J Biomed Biotechnol. 2011;2011:956169 [PMID: 22235166]
  60. J Neurosci. 1998 Aug 1;18(15):5891-900 [PMID: 9671676]
  61. Biomaterials. 2012 Oct;33(28):6660-71 [PMID: 22738778]

Grants

  1. 2018-Projekt0104/Region Skåne
  2. NA/Lunds Universitet
  3. 2019-659/Skånes universitetssjukhus
  4. DIA2020-492/Swedish Diabetes Foundation

MeSH Term

Animals
Cobalt
Female
Ganglia, Spinal
Gold
Metal Nanoparticles
Nerve Regeneration
Oxides
Polyesters
Polyethylene Glycols
Polypropylenes
Prostheses and Implants
Rats
Rats, Wistar
Schwann Cells
Sciatic Nerve

Chemicals

Oxides
Polyesters
Polypropylenes
polycaprolactone
Cobalt
Polyethylene Glycols
Gold
cobalt oxide

Word Cloud

Created with Highcharts 10.0.0nerveconduitsaxonalgoldoutgrowthSchwanncellsregenerativenanoparticlereconstructedsciaticregenerationPCLoxidepoly-ethyleneglycolmembranesAuPPEGAuCoOPPEGsignificantlyhighernumbersactivatedHSP27expressionwhereasapoptoticmatrixNerveReconstructiondefectsclinicalchallengeAutologousgraftsstandardtreatmentmayresultincompleterestorationextremityfunctionBiosyntheticstudiedwidelystilllimitations10mmdefecthealthyratsanalyzedpolyε-caprolactonelongitudinallydividedAugold-cobaltAuCoOnanoparticlesembeddedpoly-propylenePPEGcomparedunmodifiedPPEG-membranehollow21daysdetectedbettertogetherATF3-labelledcorrespondingdorsalrootgangliaDRGgroupsnumbercleavedcaspase3-labelledlowerFurthermorecorrelatedDRGsshowcorrelationconcludecobalt-oxidemodifiedimproveincreaseperformancereconstructionGoldCobaltOxideNanoparticlesModifiedPoly-PropylenePoly-EthyleneGlycolMembranesPolyε-CaprolactoneConduitsEnhanceRegenerationSciaticHealthyRatscobaltheat-shockprotein27poly-caprolactone

Similar Articles

Cited By (4)