Heat-Treated Virus Inactivation Rate Depends Strongly on Treatment Procedure: Illustration with SARS-CoV-2.

Amandine Gamble, Robert J Fischer, Dylan H Morris, Claude Kwe Yinda, Vincent J Munster, James O Lloyd-Smith
Author Information
  1. Amandine Gamble: Department of Ecology & Evolutionary Biology, University of California, Los Angelesgrid.19006.3e, California, USA. ORCID
  2. Robert J Fischer: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA. ORCID
  3. Dylan H Morris: Department of Ecology & Evolutionary Biology, Princeton University, New Jersey, USA. ORCID
  4. Claude Kwe Yinda: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA. ORCID
  5. Vincent J Munster: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA. ORCID
  6. James O Lloyd-Smith: Department of Ecology & Evolutionary Biology, University of California, Los Angelesgrid.19006.3e, California, USA. ORCID

Abstract

Decontamination helps limit environmental transmission of infectious agents. It is required for the safe reuse of contaminated medical, laboratory, and personal protective equipment, and for the safe handling of biological samples. Heat treatment is a common decontamination method, notably used for viruses. We show that for liquid specimens (here, solution of SARS-CoV-2 in cell culture medium), the Virus inactivation rate under heat treatment at 70°C can vary by almost two orders of magnitude depending on the treatment procedure, from a half-life of 0.86 min (95% credible interval [CI] 0.09, 1.77) in closed vials in a heat block to 37.04 min (95% CI 12.64, 869.82) in uncovered plates in a dry oven. These findings suggest a critical role of evaporation in Virus inactivation via dry heat. Placing samples in open or uncovered containers may dramatically reduce the speed and efficacy of heat treatment for Virus inactivation. Given these findings, we reviewed the literature on temperature-dependent coronavirus stability and found that specimen container types, along with whether they are closed, covered, or uncovered, are rarely reported in the scientific literature. Heat-treatment procedures must be fully specified when reporting experimental studies to facilitate result interpretation and reproducibility, and must be carefully considered when developing decontamination guidelines. Heat is a powerful weapon against most infectious agents. It is widely used for decontamination of medical, laboratory, and personal protective equipment, and for biological samples. There are many methods of heat treatment, and methodological details can affect speed and efficacy of decontamination. We applied four different Heat-treatment procedures to liquid specimens containing SARS-CoV-2. Our results show that the container used to store specimens during decontamination can substantially affect inactivation rate; for a given initial level of contamination, decontamination time can vary from a few minutes in closed vials to several hours in uncovered plates. Reviewing the literature, we found that container choices and heat treatment methods are only rarely reported explicitly in methods sections. Our study shows that careful consideration of Heat-treatment procedure-in particular the choice of specimen container and whether it is covered-can make results more consistent across studies, improve decontamination practice, and provide insight into the mechanisms of Virus inactivation.

Keywords

References

  1. Influenza Other Respir Viruses. 2014 Sep;8(5):585-6 [PMID: 25074677]
  2. J Virol Methods. 2010 Mar;164(1-2):88-95 [PMID: 20025904]
  3. J Microbiol. 2020 Oct;58(10):886-891 [PMID: 32989642]
  4. Transfusion. 2006 Oct;46(10):1770-7 [PMID: 17002634]
  5. Emerg Infect Dis. 2020 Jun;26(6):1343-1345 [PMID: 32163030]
  6. Dermatology. 2006;212 Suppl 1:119-23 [PMID: 16490989]
  7. J Hosp Infect. 2009 Sep;73(1):64-70 [PMID: 19646784]
  8. J Biosaf Biosecur. 2021 Jun;3(1):1-3 [PMID: 33521591]
  9. Biomater Artif Cells Artif Organs. 1988;16(1-3):129-34 [PMID: 2846097]
  10. J Hosp Infect. 2020 Nov;106(3):536-553 [PMID: 32841704]
  11. J Appl Microbiol. 2019 Jun;126(6):1931-1943 [PMID: 30803120]
  12. Vet Microbiol. 1994 Nov;42(2-3):255-9 [PMID: 7886936]
  13. J Gen Virol. 1981 Oct;56(Pt 2):235-40 [PMID: 6273497]
  14. Vet Microbiol. 1989 Jun;20(2):131-42 [PMID: 2549681]
  15. J Hosp Infect. 2020 Oct;106(2):226-231 [PMID: 32652214]
  16. Biologicals. 2011 Jul;39(4):224-30 [PMID: 21783380]
  17. Curr Opin Virol. 2012 Feb;2(1):96-102 [PMID: 22440972]
  18. J Histotechnol. 2020 Jun;43(2):102-104 [PMID: 32116147]
  19. Emerg Infect Dis. 2015 Jul;21(7):1243-6 [PMID: 26079114]
  20. Am J Infect Control. 2011 Feb;39(1):e1-9 [PMID: 21145624]
  21. Front Microbiol. 2018 Mar 27;9:504 [PMID: 29636728]
  22. PLoS One. 2020 Dec 8;15(12):e0243505 [PMID: 33290421]
  23. Emerg Infect Dis. 2020 Sep;26(9): [PMID: 32511089]
  24. Proc Natl Acad Sci U S A. 2021 Feb 23;118(8): [PMID: 33536312]
  25. Transfus Med Rev. 2020 Apr;34(2):75-80 [PMID: 32107119]
  26. Food Microbiol. 2012 May;30(1):180-6 [PMID: 22265299]
  27. Environ Sci Technol. 2012 Nov 6;46(21):12069-78 [PMID: 23098102]
  28. N Engl J Med. 2020 Mar 5;382(10):929-936 [PMID: 32004427]
  29. Adv Virol. 2011;2011:734690 [PMID: 22312351]
  30. PLoS Biol. 2016 Aug 22;14(8):e1002538 [PMID: 27547938]
  31. Vet J. 2008 Jul;177(1):71-9 [PMID: 17513145]
  32. Am J Infect Control. 2010 Jun;38(5):354-60 [PMID: 20430477]
  33. PLoS One. 2012;7(10):e46789 [PMID: 23056454]
  34. Microbes Environ. 2015;30(2):140-4 [PMID: 25843687]
  35. Appl Environ Microbiol. 2021 Sep 10;87(19):e0031421 [PMID: 34288702]
  36. Appl Environ Microbiol. 2010 May;76(9):2712-7 [PMID: 20228108]
  37. Water Res. 2009 Apr;43(7):1893-8 [PMID: 19246070]
  38. J Appl Microbiol. 2012 May;112(5):1050-7 [PMID: 22404161]
  39. mSphere. 2020 Jul 1;5(4): [PMID: 32611701]
  40. J Korean Med Sci. 2020 Nov 30;35(46):e415 [PMID: 33258335]
  41. Jikken Dobutsu. 1988 Jul;37(3):341-5 [PMID: 3416941]
  42. Elife. 2021 Jul 13;10: [PMID: 33904403]
  43. Lancet Microbe. 2020 May;1(1):e10 [PMID: 32835322]
  44. Euro Surveill. 2013 Sep 19;18(38): [PMID: 24084338]
  45. Vet Microbiol. 2014 Dec 5;174(3-4):427-432 [PMID: 25465663]
  46. Avian Pathol. 2013;42(3):248-52 [PMID: 23607441]
  47. JAMA. 2020 Apr 28;323(16):1610-1612 [PMID: 32129805]
  48. Virol J. 2020 Oct 7;17(1):145 [PMID: 33028356]
  49. mSphere. 2020 Oct 21;5(5): [PMID: 33087516]
  50. CMAJ. 2020 Oct 13;192(41):E1189-E1197 [PMID: 32732229]
  51. J Stat Softw. 2017;76: [PMID: 36568334]
  52. Emerg Infect Dis. 2020 Sep;26(9): [PMID: 32491983]
  53. J Gen Virol. 1971 Mar;10(3):209-20 [PMID: 4324730]
  54. N Engl J Med. 2020 Apr 16;382(16):1564-1567 [PMID: 32182409]
  55. Appl Environ Microbiol. 2012 Oct;78(19):6781-8 [PMID: 22820337]
  56. Biomed Environ Sci. 2003 Sep;16(3):246-55 [PMID: 14631830]
  57. J Virol Methods. 2004 Oct;121(1):85-91 [PMID: 15350737]
  58. Saudi J Kidney Dis Transpl. 1995 April-June;6(2):174-8 [PMID: 18583860]
  59. CMAJ. 2020 Aug 4;192(31):E871-E874 [PMID: 32646870]
  60. J Virol. 2007 Jun;81(11):5429-36 [PMID: 17182688]
  61. PLoS Comput Biol. 2009 Apr;5(4):e1000346 [PMID: 19360126]

MeSH Term

Decontamination
Hot Temperature
Personal Protective Equipment
Reproducibility of Results
SARS-CoV-2
Specimen Handling
Virus Inactivation

Word Cloud

Created with Highcharts 10.0.0decontaminationtreatmentheatinactivationSARS-CoV-2viruscanuncoveredcontainerenvironmentalsamplesusedspecimensclosedliteraturemethodsinfectiousagentssafemedicallaboratorypersonalprotectiveequipmentbiologicalHeatshowliquidratevary095%vialsplatesdryfindingsspeedefficacycoronavirusstabilityfoundspecimenwhetherrarelyreportedproceduresmuststudiesaffectheat-treatmentresultsDecontaminationhelpslimittransmissionrequiredreusecontaminatedhandlingcommonmethodnotablyvirusessolutioncellculturemedium70°Calmosttwoordersmagnitudedependingprocedurehalf-life86 mincredibleinterval[CI]09177block3704 minCI126486982ovensuggestcriticalroleevaporationviaPlacingopencontainersmaydramaticallyreduceGivenreviewedtemperature-dependenttypesalongcoveredscientificHeat-treatmentfullyspecifiedreportingexperimentalfacilitateresultinterpretationreproducibilitycarefullyconsidereddevelopingguidelinespowerfulweaponwidelymanymethodologicaldetailsappliedfourdifferentcontainingstoresubstantiallygiveninitiallevelcontaminationtimeminutesseveralhoursReviewingchoicesexplicitlysectionsstudyshowscarefulconsiderationprocedure-inparticularchoicecovered-canmakeconsistentacrossimprovepracticeprovideinsightmechanismsHeat-TreatedVirusInactivationRateDependsStronglyTreatmentProcedure:Illustrationpersistencetemperature

Similar Articles

Cited By (23)