Physiopathology and effectiveness of therapeutic vaccines against human papillomavirus.
Noor Ayesha, Sara Aboulaghras, Muhammad Jahangeer, Areej Riasat, Rehana Ramzan, Rameen Fatima, Muhammad Akram, Abdelaali Balahbib, Abdelhakim Bouyahya, Ekaterina Sepiashvili, Gokhan Zengin, Mohammad Ali Shariati
Author Information
Noor Ayesha: Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
Sara Aboulaghras: Physiology and Physiopathology Team, Department of Biology, Mohammed V University of Rabat, Rabat, Morocco.
Muhammad Jahangeer: Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan.
Areej Riasat: Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan.
Rehana Ramzan: Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan.
Rameen Fatima: Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
Muhammad Akram: Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan.
Abdelaali Balahbib: Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
Abdelhakim Bouyahya: Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco. boyahyaa-90@hotmail.fr.
Ekaterina Sepiashvili: K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation.
Gokhan Zengin: Physiology and Biochemistry Laboratory, Department of Biology, Selcuk University, Campus, Konya, Turkey. gokhanzengin@selcuk.edu.tr.
Mohammad Ali Shariati: K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation.
Human papillomavirus (HPV) is a well-known sexually transmitted disorder globally. Human papillomavirus (HPV) is the 3rd most common cancer that causes cervical carcinoma, and globally it accounts for 275,000 deaths every year. The load of HPV-associated abrasions can be lessened through vaccination. At present, three forms of prophylactic vaccines, Cervarix, Gadrasil, and Gardasil 9, are commercially accessible but all these prophylactic vaccines have not the ability to manage and control developed abrasions or infections. Therefore, a considerable amount of the population is not secured from HPV infectivity. Consequently, the development of therapeutic HPV vaccines is a crucial requirement of this era, for the treatment of persisting infections, and to stop the progression of HPV-associated cancers. Therapeutic vaccines are a developing trial approach. Because of the constitutive expression of E6 and E7 early genes in cancerous and pre-cancerous tissues, and their involvement in disturbance of the cell cycle, these are best targets for this therapeutic vaccine treatment. For the synthesis and development of therapeutic vaccines, various approaches have been examined comprising cell-based vaccines, peptide/protein-based vaccines, nucleic acid-based vaccines, and live-vector vaccines all proceeding towards clinical trials. This review emphasizes the development, progress, current status, and future perspective of several vaccines for the cure of HPV-related abrasions and cancers. This review also provides an insight to assess the effectiveness, safety, efficacy, and immunogenicity of therapeutic vaccines in the cure of patients infected with HPV-associated cervical cancer.
Alvarez RD, Huh WK, Bae S, Lamb LS Jr, Conner MG, Boyer J, Wang C, Hung C-F, Sauter E, Paradis M (2016) A pilot study of pNGVL4a-CRT/E7 (detox) for the treatment of patients with HPV16+ cervical intraepithelial neoplasia 2/3 (CIN2/3). Gynecol Oncol 140(2):245–252
[DOI: 10.1016/j.ygyno.2015.11.026]
Alves BM, Prellwitz IM, Siqueira JD, Meyrelles ÂR, Bergmann A, Seuánez HN, Machado ES, Soares MA, Soares EA (2015) The effect of human leukocyte antigen G alleles on human papillomavirus infection and persistence in a cohort of HIV-positive pregnant women from Brazil. Infect Genet Evol 34:339–343
[DOI: 10.1016/j.meegid.2015.06.027]
Barra F, Della Corte L, Noberasco G, Foreste V, Riemma G, Di Filippo C, Bifulco G, Orsi A, Icardi G, Ferrero S (2020) Advances in therapeutic vaccines for treating human papillomavirus-related cervical intraepithelial neoplasia. J Obstet Gynaecol Res 46(7):989–1006
[DOI: 10.1111/jog.14276]
Bhaskaran M, Murali SV, Rajaram B, Krishnasamy S, Devasena CS, Pathak A, Ravi V, Swaminathan K, Ayyappa A, Vedhantham S (2019) Association of HLA-A,-B, DRB, and DQB alleles with persistent HPV-16 infection in women from Tamil Nadu, India. Viral Immunol 32(10):430–441
[DOI: 10.1089/vim.2019.0094]
Bogani G, Maggiore ULR, Signorelli M, Martinelli F, Ditto A, Sabatucci I, Mosca L, Lorusso D, Raspagliesi F (2018) The role of human papillomavirus vaccines in cervical cancer: prevention and treatment. Crit Rev Oncol Hematol 122:92–97
[DOI: 10.1016/j.critrevonc.2017.12.017]
Bowden SJ, Bodinier B, Kalliala I, Zuber V, Vuckovic D, Doulgeraki T, Whitaker MD, Wielscher M, Cartwright R, Tsilidis KK (2021) Genetic variation in cervical preinvasive and invasive disease: a genome-wide association study. The Lancet Oncology 22(4):548–557
[DOI: 10.1016/S1470-2045(21)00028-0]
Brun J-L, Dalstein V, Leveque J, Mathevet P, Raulic P, Baldauf J-J, Scholl S, Huynh B, Douvier S, Riethmuller D (2011) Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol 204(2):169–1e1
[DOI: 10.1016/j.ajog.2010.09.020]
Bruni L, Diaz M, Barrionuevo-Rosas L, Herrero R, Bray F, Bosch FX, de Sanjosé S, Castellsagué X (2016) Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Glob Health 4(7):e453–e463
[DOI: 10.1016/S2214-109X(16)30099-7]
Cai H, Feng Y, Fan P, Guo Y, Kuerban G, Chang C, Yao X, Peng Y, Zheng Wang R (2021). HPV16 E6-specific T cell response and HLA-A alleles are related to the prognosis of patients with cervical cancer. https://doi.org/10.21203/rs.3.rs-209456/v1
Chabeda A, Yanez RJ, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II (2018) Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Research 5:46–58
[DOI: 10.1016/j.pvr.2017.12.006]
Chan PK, Cheung JL, Cheung T-H, Lin C, Tam AO, Chan DP, Zhou DX, Lo KW, Yim S-F, Siu S-SN (2006) HLA-B alleles, high-risk HPV infection and risk for cervical neoplasia in southern Chinese women. Int J Cancer 118(6):1430–1435
[DOI: 10.1002/ijc.21528]
Chan PK, Cheung T-H, Lin CK, Siu S-SN, Yim S-F, Lo KW, Cheung JL, Tam AO, Tang JW (2007) Association between HLA-DRB1 polymorphism, high-risk HPV infection and cervical neoplasia in southern Chinese. J Med Virol 79(7):970–976
[DOI: 10.1002/jmv.20805]
Cheng MA, Farmer E, Huang C, Lin J, Hung C-F, Wu T-C (2018) Therapeutic DNA vaccines for human papillomavirus and associated diseases. Hum Gene Ther 29(9):971–996
[DOI: 10.1089/hum.2017.197]
Coleman HN, Greenfield WW, Stratton SL, Vaughn R, Kieber A, Moerman-Herzog AM, Spencer HJ, Hitt WC, Quick CM, Hutchins LF (2016) Human papillomavirus type 16 viral load is decreased following a therapeutic vaccination. Cancer Immunol Immunother 65(5):563–573
[DOI: 10.1007/s00262-016-1821-x]
Cuzick J, Terry G, Ho L, Monaghan J, Lopes A, Clarkson P, Duncan I (2000) Association between high-risk HPV types, HLA DRB1* and DQB1* alleles and cervical cancer in British women. Br J Cancer 82(7):1348–1352
[DOI: 10.1054/bjoc.1999.1103]
Da Silva DM, Skeate JG, Chavez-Juan E, Lühen KP, Wu J-M, Wu C-M, Kast WM, Hwang K (2019) Therapeutic efficacy of a human papillomavirus type 16 E7 bacterial exotoxin fusion protein adjuvanted with CpG or GPI-0100 in a preclinical mouse model for HPV-associated disease. Vaccine 37(22):2915–2924
[DOI: 10.1016/j.vaccine.2019.04.043]
de Araujo Souza PS, Villa LL (2003) Genetic susceptibility to infection with human papillomavirus and development of cervical cancer in women in Brazil. Mutation Research/Reviews in Mutation Research 544(2–3):375–383
de Araujo Souza PS, Sichero L, Maciag PC (2009). HPV variants and HLA polymorphisms: the role of variability on the risk of cervical cancer. Future Oncol 5(3):359–70. https://doi.org/10.2217/fon.09.8
Dong D, Yang H, Li K, Xu G, Song L, Fan X, Jiang X, Yie S (2010) Human leukocyte antigen-G (HLA-G) expression in cervical lesions: association with cancer progression, HPV 16/18 infection, and host immune response. Reprod Sci 17(8):718–723
[DOI: 10.1177/1933719110369183]
Fahim NM, Shehata IH, Taha SE, Fahmy RA, Elsayed MS (2018) Human Leukocyte Antigen-G (HLA-G) Expression in precancerous and cancerous cervical lesions: association with human papilloma virus infection and host immune response. The Egyptian J Immunol 25(1):125–134
Ferguson R, Ramanakumar AV, Richardson H, Tellier P-P, Coutlée F, Franco EL, Roger M (2011) Human leukocyte antigen (HLA)-E and HLA-G polymorphisms in human papillomavirus infection susceptibility and persistence. Hum Immunol 72(4):337–341
[DOI: 10.1016/j.humimm.2011.01.010]
Gillio-Tos A, da Graça Bicalho M, Fiano V, Grasso C, Tarallo V, De Marco L, Trevisan M, Xavier M, Slowik R, Carvalho NS (2012) Case–control study of HLA-G promoter methylation status, HPV infection and cervical neoplasia in Curitiba, Brazil: a pilot analysis. BMC Cancer 12(1):1–10
[DOI: 10.1186/1471-2407-12-618]
Gokhale P, Mania-Pramanik J, Sonawani A, Idicula-Thomas S, Kerkar S, Tongaonkar H, Chaudhari H, Warke H, Salvi V (2014) Cervical cancer in Indian women reveals contrasting association among common sub-family of HLA class I alleles. Immunogenetics 66(12):683–691
[DOI: 10.1007/s00251-014-0805-2]
Gonçalves CA, Lopes-Júnior LC, Nampo FK, Zilly A, Mayer PCM, Pereira-da-Silva G (2019) Safety, efficacy and immunogenicity of therapeutic vaccines in the treatment of patients with high-grade cervical intraepithelial neoplasia associated with human papillomavirus: A systematic review protocol. BMJ Open 9(7):e026975
[DOI: 10.1136/bmjopen-2018-026975]
Goodman MT, McDuffie K, Hernandez B, Bertram CC, Wilkens LR, Guo C, Seifried A, Killeen J, Le Marchand L (2001) CYP1A1, GSTM1, and GSTT1 polymorphisms and the risk of cervical squamous intraepithelial lesions in a multiethnic population. Gynecol Oncol 81(2):263–269
[DOI: 10.1006/gyno.2001.6154]
Greenfield WW, Stratton SL, Myrick RS, Vaughn R, Donnalley LM, Coleman HN, Mercado M, Moerman-Herzog AM, Spencer HJ, Andrews-Collins NR (2015) A phase I dose-escalation clinical trial of a peptide-based human papillomavirus therapeutic vaccine with Candida skin test reagent as a novel vaccine adjuvant for treating women with biopsy-proven cervical intraepithelial neoplasia 2/3. Oncoimmunology 4(10):e1031439
[DOI: 10.1080/2162402X.2015.1031439]
Guimarães MC, Soares CP, Donadi EA, Derchain SF, Andrade LA, Silva TG, Hassumi MK, Simões RT, Miranda FA, Lira RC (2010) Low expression of human histocompatibility soluble leukocyte antigen-G (HLA-G5) in invasive cervical cancer with and without metastasis, associated with papilloma virus (HPV). J Histochem Cytochem 58(5):405–411
[DOI: 10.1369/jhc.2009.954131]
Hancock G, Hellner K, Dorrell L (2018) Therapeutic HPV vaccines. Best Practice & Research Clinical Obstetrics & Gynaecology 47:59–72
[DOI: 10.1016/j.bpobgyn.2017.09.008]
Harper DM, DeMars LR (2017) HPV vaccines–a review of the first decade. Gynecol Oncol 146(1):196–204
[DOI: 10.1016/j.ygyno.2017.04.004]
Hernández-Hernández DM, Cerda-Flores RM, Juárez-Cedillo T, Granados-Arriola J, Vargas-Alarcón G, Apresa-García T, Alvarado-Cabrero I, García-Carrancá A, Salcedo-Vargas M, Mohar-Betancourt A (2009) Human leukocyte antigens I and II haplotypes associated with human papillomavirus 16-positive invasive cervical cancer in Mexican women. Int J Gynecol Cancer 19(6):1099–1106
[DOI: 10.1111/IGC.0b013e3181a83cf4]
Hildesheim A, Wang SS (2002) Host and viral genetics and risk of cervical cancer: a review. Virus Res 89(2):229–240
[DOI: 10.1016/S0168-1702(02)00191-0]
Hu Y, Wu J-Z, Zhu H, Zhang S-H, Zhu Y-Y, Wu Y-Y, Shuai C-X (2017) Association of HLA-DRB1, HLA-DQB1 polymorphisms with HPV 16 E6 variants among young cervical cancer patients in China. J Cancer 8(12):2401–2409
[DOI: 10.7150/jca.19809]
Hus I, Gonet-Sebastianka J, Surdacka A, Bojarska-Junak A, Roliński J (2015). Analysis of peripheral blood immune cells after prophylactic immunization with HPV-16/18 ASO4-adjuvanted vaccin. Advances in Hygiene & Experimental Medicine/Postepy Higieny i Medycyny Doswiadczalnej, 69, p543–548. 6p
Ivansson EL, Magnusson JJ, Magnusson PKE, Erlich HA, Gyllensten UB (2008) MHC loci affecting cervical cancer risk: distinguishing the effects of HLA-DQB1 and non-HLA genes TNF, LTA, TAP1 and TAP2. Genes Immun 9(7):613–623
[DOI: 10.1038/gene.2008.58]
Kawana K, Adachi K, Kojima S, Taguchi A, Tomio K, Yamashita A, Nishida H, Nagasaka K, Arimoto T, Yokoyama T (2014) Oral vaccination against HPV E7 for treatment of cervical intraepithelial neoplasia grade 3 (CIN3) elicits E7-specific mucosal immunity in the cervix of CIN3 patients. Vaccine 32(47):6233–6239
[DOI: 10.1016/j.vaccine.2014.09.020]
Khong H, Overwijk WW (2016) Adjuvants for peptide-based cancer vaccines. Journal for Immunotherapy of Cancer 4(1):1–11
[DOI: 10.1186/s40425-016-0160-y]
Kim HJ, Kim H-J (2017) Current status and future prospects for human papillomavirus vaccines. Arch Pharm Res 40(9):1050–1063
[DOI: 10.1007/s12272-017-0952-8]
Kim TJ, Jin H-T, Hur S-Y, Yang HG, Seo YB, Hong SR, Lee C-W, Kim S, Woo J-W, Park KS (2014) Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun 5(1):1–14
Kübler H, Scheel B, Gnad-Vogt U, Miller K, Schultze-Seemann W, Vom Dorp F, Parmiani G, Hampel C, Wedel S, Trojan L (2015) Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. Journal for Immunotherapy of Cancer 3(1):1–14
[DOI: 10.1186/s40425-015-0068-y]
Landy R, Windridge P, Gillman MS, Sasieni PD (2018) What cervical screening is appropriate for women who have been vaccinated against high risk HPV? A simulation study. Int J Cancer 142(4):709–718
[DOI: 10.1002/ijc.31094]
Leo PJ, Madeleine MM, Wang S, Schwartz SM, Newell F, Pettersson-Kymmer U, Hemminki K, Hallmans G, Tiews S, Steinberg W (2017) Defining the genetic susceptibility to cervical neoplasia—a genome-wide association study. PLoS Genet 13(8):e1006866
[DOI: 10.1371/journal.pgen.1006866]
Lin K-H, Chang L-S, Tian C-Y, Yeh Y-C, Chen Y-J, Chuang T-H, Liu S-J, Leng C-H (2016) Carboxyl-terminal fusion of E7 into Flagellin shifts TLR5 activation to NLRC4/NAIP5 activation and induces TLR5-independent anti-tumor immunity. Sci Rep 6(1):1–10
[DOI: 10.1038/s41598-016-0001-8]
Liu Y, Li H, Pi R, Yang Y, Zhao X, Qi X (2019) Current strategies against persistent human papillomavirus infection. Int J Oncol 55(3):570–584
Louvanto K, Roger M, Faucher M-C, Syrjänen K, Grenman S, Syrjänen S (2018) HLA-G and vertical mother-to-child transmission of human papillomavirus infection. Hum Immunol 79(6):471–476
[DOI: 10.1016/j.humimm.2018.03.002]
Lundstrom K (2015) RNA-based drugs and vaccines. Expert Review of Vaccines 14(2):253–263
[DOI: 10.1586/14760584.2015.959932]
Maciag PC, Schlecht NF, Souza PS, Franco EL, Villa LL, Petzl-Erler ML (2000) Major histocompatibility complex class II polymorphisms and risk of cervical cancer and human papillomavirus infection in Brazilian women. Cancer Epidemiology and Prevention Biomarkers 9(11):1183–1191
Madeleine MM, Brumback B, Cushing-Haugen KL, Schwartz SM, Daling JR, Smith AG, Nelson JL, Porter P, Shera KA, McDougall JK (2002) Human leukocyte antigen class II and cervical cancer risk: a population-based study. J Infect Dis 186(11):1565–1574
[DOI: 10.1086/345285]
Madeleine MM, Johnson LG, Smith AG, Hansen JA, Nisperos BB, Li S, Zhao L-P, Daling JR, Schwartz SM, Galloway DA (2008) Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res 68(9):3532–3539
[DOI: 10.1158/0008-5472.CAN-07-6471]
Mahmud SM, Robinson K, Richardson H, Tellier P-P, Ferenczy AS, Roger M, Coutlée F, Franco EL (2007) HLA polymorphisms and cervical human Papillomavirus infection in a cohort of Montreal University students. J Infect Dis 196(1):82–90
[DOI: 10.1086/518612]
Marzi A, Kercher L, Marceau J, York A, Callsion J, Gardner DJ, Geisbert TW, Feldmann H (2015) Stat1-deficient mice are not an appropriate model for efficacy testing of recombinant vesicular stomatitis virus–based filovirus vaccines. J Infect Dis 212(suppl_2):S404–S409
[DOI: 10.1093/infdis/jiv188]
Matsumoto K, Yasugi T, Nakagawa S, Okubo M, Hirata R, Maeda H, Yoshikawa H, Taketani Y (2003) Human papillomavirus type 16 E6 variants and HLA class II alleles among Japanese women with cervical cancer. Int J Cancer 106(6):919–922
[DOI: 10.1002/ijc.11332]
Metcalfe S, Roger M, Faucher M-C, Coutlée F, Franco EL, Brassard P (2013) The association between human leukocyte antigen (HLA)-G polymorphisms and human papillomavirus (HPV) infection in Inuit women of northern Quebec. Hum Immunol 74(12):1610–1615
[DOI: 10.1016/j.humimm.2013.08.279]
Mousavi T, Saravi SS, Valadan R, Haghshenas MR, Rafiei A, Jafarpour H, Shamshirian A (2020) Different types of adjuvants in prophylactic and therapeutic human papillomavirus vaccines in laboratory animals: a systematic review. Arch Virol 165(2):263–284
[DOI: 10.1007/s00705-019-04479-4]
Odunsi K, Terry G, Ho L, Bell J, Cuzick J, Ganesan TS (1996) Susceptibility to human papillomavirus-associated cervical intra-epithelial neoplasia is determined by specific HLA DR-DQ alleles. Int J Cancer 67(5):595–602
[DOI: 10.1002/(SICI)1097-0215(19960904)67]
Paaso A, Jaakola A, Syrjänen S, Louvanto K (2019) From HPV infection to lesion progression: The role of HLA alleles and host immunity. Acta Cytol 63(2):148–158
[DOI: 10.1159/000494985]
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z, Agi E (2020) Development of multiepitope therapeutic vaccines against the most prevalent high-risk human papillomaviruses. Immunotherapy 12(7):459–479
[DOI: 10.2217/imt-2019-0196]
Ramanathan P, Ganeshrajah S, Raghanvan RK, Singh SS, Thangarajan R (2014) Development and clinical evaluation of dendritic cell vaccines for HPV related cervical cancer-a feasibility study. Asian Pac J Cancer Prev 15(14):5909–5916
[DOI: 10.7314/APJCP.2014.15.14.5909]
Roden RB, Stern PL (2018) Opportunities and challenges for human papillomavirus vaccination in cancer. Nat Rev Cancer 18(4):240–254
[DOI: 10.1038/nrc.2018.13]
Rosales R, López-Contreras M, Rosales C, Magallanes-Molina J-R, Gonzalez-Vergara R, Arroyo-Cazarez JM, Ricardez-Arenas A, del Follo-Valencia A, Padilla-Arriaga S, Guerrero MV (2014) Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine. Hum Gene Ther 25(12):1035–1049
[DOI: 10.1089/hum.2014.024]
Sanjeevi CB, Hjelmström P, Hallmans G, Wiklund F, Lenner P, Angström T, Dillner J, Lernmark (1996) Different HLA-DR-DO haplotypes are associated with cervical intraepithelial neoplasia among human papillomavirus type-16 seropositive and seronegative Swedish women. Int J Cancer 68(4):409–414
[DOI: 10.1002/(SICI)1097-0215(19961115)68]
Santesso N, Mustafa RA, Wiercioch W, Kehar R, Gandhi S, Chen Y, Cheung A, Hopkins J, Khatib R, Ma B (2016) Systematic reviews and meta-analyses of benefits and harms of cryotherapy, LEEP, and cold knife conization to treat cervical intraepithelial neoplasia. Int J Gynecol Obstet 132(3):266–271
[DOI: 10.1016/j.ijgo.2015.07.026]
Shanmugasundaram S, You J (2017) Targeting persistent human papillomavirus infection. Viruses 9(8):229
[DOI: 10.3390/v9080229]
Silva TG, Crispim JC, Miranda FA, Hassumi MK, de Mello JM, Simões RT, Souto F, Soares EG, Donadi EA, Soares CP (2011) Expression of the nonclassical HLA-G and HLA-E molecules in laryngeal lesions as biomarkers of tumor invasiveness. Histol Histopathol:1487–1497
Simoes RT, Gonçalves MAG, Castelli EC, Junior CM, Bettini JS, Discorde ML, Duarte G, Quintana SM, Simoes AL, Moreau P (2009) HLA-G polymorphisms in women with squamous intraepithelial lesions harboring human papillomavirus. Mod Pathol 22(8):1075–1082
[DOI: 10.1038/modpathol.2009.67]
Skeate JG, Woodham AW, Einstein MH, Da Silva DM, Kast WM (2016) Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases. Human Vaccines & Immunotherapeutics 12(6):1418–1429
[DOI: 10.1080/21645515.2015.1136039]
Smith MA, Tellier P-P, Roger M, Coutlée F, Franco EL, Richardson H (2014) Determinants of human papillomavirus coinfections among Montreal university students: the influence of behavioral and biologic factors. Cancer Epidemiology and Prevention Biomarkers 23(5):812–822
[DOI: 10.1158/1055-9965.EPI-13-1255]
Tota JE, Chevarie-Davis M, Richardson LA, Devries M, Franco EL (2011) Epidemiology and burden of HPV infection and related diseases: implications for prevention strategies. Prev Med 53:S12–S21
[DOI: 10.1016/j.ypmed.2011.08.017]
Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M (2015) Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386(10008):2078–2088
[DOI: 10.1016/S0140-6736(15)00239-1]
Valentino K, Poronsky CB (2016) Human papillomavirus infection and vaccination. J Pediatr Nurs 31(2):e155–e166
[DOI: 10.1016/j.pedn.2015.10.005]
Van Damme P, Bouillette-Marussig M, Hens A, De Coster I, Depuydt C, Goubier A, Van Tendeloo V, Cools N, Goossens H, Hercend T (2016) GTL001, A therapeutic vaccine for women infected with human papillomavirus 16 or 18 and normal cervical cytology: results of a phase I clinical trial. Clin Cancer Res 22(13):3238–3248
[DOI: 10.1158/1078-0432.CCR-16-0085]
van Poelgeest MI, Welters MJ, Vermeij R, Stynenbosch LF, Loof NM, Berends-van der Meer DM, Löwik MJ, Hamming IL, van Esch EM, Hellebrekers BW (2016) Vaccination against oncoproteins of HPV16 for noninvasive vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell response. Clin Cancer Res 22(10):2342–2350
[DOI: 10.1158/1078-0432.CCR-15-2594]
Vici P, Pizzuti L, Mariani L, Zampa G, Santini D, Di Lauro L, Gamucci T, Natoli C, Marchetti P, Barba M (2016) Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies. Expert Review of Vaccines 15(10):1327–1336
[DOI: 10.1080/14760584.2016.1176533]
Vonsky MS, Runov AL, Gordeychuk IV, Isaguliants MG (2019) Therapeutic vaccines against human papilloma viruses: achievements and prospects. Biochem Mosc 84(7):800–816
[DOI: 10.1134/S0006297919070101]
Wang SS, Hildesheim A, Gao X, Schiffman M, Herrero R, Bratti MC, Sherman ME, Barnes WA, Greenberg MD, McGowan L (2002) Comprehensive analysis of human leukocyte antigen class I alleles and cervical neoplasia in 3 epidemiologic studies. J Infect Dis 186(5):598–605
[DOI: 10.1086/342295]
Wang R, Pan W, Jin L, Huang W, Li Y, Wu D, Gao C, Ma D, Liao S (2020) Human papillomavirus vaccine against cervical cancer: opportunity and challenge. Cancer Lett 471:88–102
[DOI: 10.1016/j.canlet.2019.11.039]
Wu Y, Liu B, Lin W, Xu Y, Li L, Zhang Y, Chen S, Xu A (2007) HPV16 E6 variants and HLA class II polymorphism among Chinese women with cervical cancer. J Med Virol 79(4):439–446
[DOI: 10.1002/jmv.20785]
Yang A, Farmer E, Lin J, Wu T-C, Hung C-F (2017) The current state of therapeutic and T cell-based vaccines against human papillomaviruses. Virus Res 231:148–165
[DOI: 10.1016/j.virusres.2016.12.002]
Zhang X, Lv Z, Yu H, Wang F, Zhu J (2015) The HLA-DQB1 gene polymorphisms associated with cervical cancer risk: a meta-analysis. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 73:58–64. https://doi.org/10.1016/j.biopha.2015.06.002
[DOI: 10.1016/j.biopha.2015.06.002]
Zhang Y, Yang J, Li M, Cui M, Fu ZF, Zhao L, Zhou M (2019) A recombinant rabies virus expressing Fms-like tyrosine kinase 3 ligand (Flt3L) induces enhanced immunogenicity in mice. Virol Sin 34(6):662–672
[DOI: 10.1007/s12250-019-00144-x]