Estimating the effect of tracking tag weight on insect movement using video analysis: A case study with a flightless orthopteran.

Oto Kaláb, David Musiolek, Pavel Rusnok, Petr Hurtik, Martin Tomis, Petr Kočárek
Author Information
  1. Oto Kaláb: Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia. ORCID
  2. David Musiolek: Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia.
  3. Pavel Rusnok: Institute for Research and Applications of Fuzzy Modeling, Centre of Excellence IT4Innovations, University of Ostrava, Ostrava, Czechia.
  4. Petr Hurtik: Institute for Research and Applications of Fuzzy Modeling, Centre of Excellence IT4Innovations, University of Ostrava, Ostrava, Czechia.
  5. Martin Tomis: Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czechia.
  6. Petr Kočárek: Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia. ORCID

Abstract

In this study, we describe an inexpensive and rapid method of using video analysis and identity tracking to measure the effects of tag weight on insect movement. In a laboratory experiment, we assessed the tag weight and associated context-dependent effects on movement, choosing temperature as a factor known to affect insect movement and behavior. We recorded the movements of groups of flightless adult crickets Gryllus locorojo (Orthoptera:Gryllidae) as affected by no tag (control); by light, medium, or heavy tags (198.7, 549.2, and 758.6 mg, respectively); and by low, intermediate, or high temperatures (19.5, 24.0, and 28.3°C, respectively). Each individual in each group was weighed before recording and was recorded for 3 consecutive days. The mean (± SD) tag mass expressed as a percentage of body mass before the first recording was 26.8 ± 3.7% with light tags, 72 ± 11.2% with medium tags, and 101.9 ± 13.5% with heavy tags. We found that the influence of tag weight strongly depended on temperature, and that the negative effects on movement generally increased with tag weight. At the low temperature, nearly all movement properties were negatively influenced. At the intermediate and high temperatures, the light and medium tags did not affect any of the movement properties. The continuous 3-day tag load reduced the average movement speed only for crickets with heavy tags. Based on our results, we recommend that researchers consider or investigate the possible effects of tags before conducting any experiment with tags in order to avoid obtaining biased results.

References

  1. Behav Processes. 2004 Sep 30;67(2):207-19 [PMID: 15240058]
  2. Nat Methods. 2009 Jun;6(6):451-7 [PMID: 19412169]
  3. J Insect Physiol. 2010 Jul;56(7):822-30 [PMID: 20197070]
  4. Science. 2015 Aug 7;349(6248):597 [PMID: 26250678]
  5. Science. 2015 Jun 12;348(6240):aaa2478 [PMID: 26068858]
  6. Science. 1974 Aug 30;185(4153):747-56 [PMID: 4602075]
  7. Sci Rep. 2019 Aug 26;9(1):12343 [PMID: 31451798]
  8. Behav Res Methods Instrum Comput. 2001 Aug;33(3):398-414 [PMID: 11591072]
  9. J Exp Biol. 2012 Jul 1;215(Pt 13):2210-9 [PMID: 22675181]
  10. Environ Entomol. 2013 Jun;42(3):515-23 [PMID: 23726060]
  11. Sci Robot. 2020 Jul 15;5(44): [PMID: 33022605]
  12. J Exp Biol. 2005 Nov;208(Pt 21):4063-8 [PMID: 16244165]
  13. Elife. 2021 Feb 26;10: [PMID: 33634789]
  14. J Insect Physiol. 2007 Sep;53(9):950-3 [PMID: 17481649]
  15. Zootaxa. 2019 Dec 05;4705(1):zootaxa.4705.1.1 [PMID: 32230559]
  16. Biol Rev Camb Philos Soc. 2014 Aug;89(3):511-30 [PMID: 24106908]
  17. Sensors (Basel). 2018 Jul 02;18(7): [PMID: 30004457]
  18. Environ Entomol. 2009 Feb;38(1):168-75 [PMID: 19791611]
  19. Environ Entomol. 2020 Apr 14;49(2):312-323 [PMID: 32159219]
  20. Insects. 2018 Aug 22;9(3): [PMID: 30131463]
  21. Commun Biol. 2018 Jul 4;1:88 [PMID: 30271969]
  22. Interface Focus. 2017 Feb 6;7(1):20160086 [PMID: 28163878]
  23. Environ Toxicol Chem. 2012 Jun;31(6):1349-54 [PMID: 22488825]
  24. Comp Biochem Physiol A Mol Integr Physiol. 2010 May;156(1):1-18 [PMID: 20060056]
  25. PLoS One. 2012;7(9):e43975 [PMID: 22970154]
  26. J Neurosci Methods. 2010 Aug 15;191(1):138-44 [PMID: 20600321]
  27. Methods Ecol Evol. 2018 Apr;9(4):956-964 [PMID: 34306605]
  28. PLoS One. 2011;6(5):e19997 [PMID: 21603569]
  29. J Econ Entomol. 2010 Feb;103(1):63-9 [PMID: 20214369]

MeSH Term

Animals
Body Weight
Flight, Animal
Gryllidae
Linear Models
Movement
Rest
Telemetry
Temperature
Video Recording

Word Cloud

Created with Highcharts 10.0.0tagmovementtagsweighteffects±insecttemperaturelightmediumheavystudyusingvideotrackingexperimentaffectrecordedflightlesscricketsrespectivelylowintermediatehightemperaturesrecording3masspropertiesresultsdescribeinexpensiverapidmethodanalysisidentitymeasurelaboratoryassessedassociatedcontext-dependentchoosingfactorknownbehaviormovementsgroupsadultGrylluslocorojoOrthoptera:Gryllidaeaffectedcontrol198754927586mg195240283°CindividualgroupweighedconsecutivedaysmeanSDexpressedpercentagebodyfirst2687%72112%1019135%foundinfluencestronglydependednegativegenerallyincreasednearlynegativelyinfluencedcontinuous3-dayloadreducedaveragespeedBasedrecommendresearchersconsiderinvestigatepossibleconductingorderavoidobtainingbiasedEstimatingeffectanalysis:caseorthopteran

Similar Articles

Cited By