Characterizing the Metabolic and Immune Landscape of Non-small Cell Lung Cancer Reveals Prognostic Biomarkers Through Omics Data Integration.

Fengjiao Wang, Yuanfu Zhang, Yangyang Hao, Xuexin Li, Yue Qi, Mengyu Xin, Qifan Xiao, Peng Wang
Author Information
  1. Fengjiao Wang: Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
  2. Yuanfu Zhang: College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  3. Yangyang Hao: College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  4. Xuexin Li: Department of Urinary Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
  5. Yue Qi: College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  6. Mengyu Xin: College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  7. Qifan Xiao: Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
  8. Peng Wang: College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.

Abstract

Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide. The development of high-throughput single-cell RNA-sequencing (RNA-seq) technology and the advent of multi-omics have provided a solid basis for a systematic understanding of the heterogeneity in cancers. Although numerous studies have revealed the molecular features of NSCLC, it is important to identify and validate the molecular biomarkers related to specific NSCLC phenotypes at single-cell resolution. In this study, we analyzed and validated single-cell RNA-seq data by integrating multi-level omics data to identify key metabolic features and prognostic biomarkers in NSCLC. High-throughput single-cell RNA-seq data, including 4887 cellular gene expression profiles from NSCLC tissues, were analyzed. After pre-processing, the cells were clustered into 12 clusters using the t-SNE clustering algorithm, and the cell types were defined according to the marker genes. Malignant epithelial cells exhibit individual differences in molecular features and intra-tissue metabolic heterogeneity. We found that oxidative phosphorylation (OXPHOS) and glycolytic pathway activity are major contributors to intra-tissue metabolic heterogeneity of malignant epithelial cells and T cells. Furthermore, we constructed T-cell differentiation trajectories and identified several key genes that regulate the cellular phenotype. By screening for genes associated with T-cell differentiation using the Lasso algorithm and Cox risk regression, we identified four prognostic marker genes for NSCLC. In summary, our study revealed metabolic features and prognostic markers of NSCLC at single-cell resolution, which provides novel findings on molecular biomarkers and signatures of cancers.

Keywords

References

  1. Cancer Res. 2019 Sep 15;79(18):4557-4566 [PMID: 31350295]
  2. Nat Genet. 2015 Mar;47(3):209-16 [PMID: 25665006]
  3. Cell. 2018 Oct 4;175(2):502-513.e13 [PMID: 30245009]
  4. Curr Opin Cell Biol. 2017 Oct;48:47-53 [PMID: 28605656]
  5. Cell. 2020 Sep 3;182(5):1232-1251.e22 [PMID: 32822576]
  6. Nucleic Acids Res. 2019 Jan 8;47(D1):D721-D728 [PMID: 30289549]
  7. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  8. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  9. F1000Res. 2016 Aug 31;5:2122 [PMID: 27909575]
  10. Cancer Discov. 2019 Jan;9(1):130-147 [PMID: 30348676]
  11. Cell Syst. 2018 Mar 28;6(3):301-313.e3 [PMID: 29396322]
  12. Cell Metab. 2016 Jan 12;23(1):27-47 [PMID: 26771115]
  13. Nat Rev Cancer. 2016 May;16(5):275-87 [PMID: 27079802]
  14. BMC Genomics. 2013 Nov 23;14:825 [PMID: 24267790]
  15. Science. 2015 Apr 3;348(6230):124-8 [PMID: 25765070]
  16. J Clin Endocrinol Metab. 2019 Oct 1;104(10):4607-4618 [PMID: 31199456]
  17. Semin Cancer Biol. 2020 Aug;64:1-12 [PMID: 31181267]
  18. Immunol Rev. 2014 May;259(1):115-39 [PMID: 24712463]
  19. Mol Cancer. 2019 Mar 30;18(1):50 [PMID: 30925930]
  20. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  21. Nature. 2014 Jul 31;511(7511):543-50 [PMID: 25079552]
  22. Drug Resist Updat. 2009 Feb-Apr;12(1-2):1-7 [PMID: 19097929]
  23. Bioinformatics. 2011 Jun 15;27(12):1739-40 [PMID: 21546393]
  24. Medicina (Kaunas). 2019 Dec 30;56(1): [PMID: 31906017]
  25. N Engl J Med. 2012 Jun 28;366(26):2443-54 [PMID: 22658127]
  26. Science. 2010 Feb 26;327(5969):1098-102 [PMID: 20185720]
  27. Sci Rep. 2019 Jun 20;9(1):8932 [PMID: 31222140]
  28. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  29. J Exp Med. 2019 Sep 2;216(9):2128-2149 [PMID: 31227543]
  30. Int J Biochem Cell Biol. 2008;40(10):2315-32 [PMID: 18487071]
  31. Cell Metab. 2017 Jun 6;25(6):1282-1293.e7 [PMID: 28416194]
  32. Blood. 2017 Jul 20;130(3):285-296 [PMID: 28539325]
  33. Cancer Lett. 2020 Feb 1;470:126-133 [PMID: 31730903]
  34. J Cancer. 2019 Aug 29;10(22):5324-5331 [PMID: 31632477]
  35. Clin Chest Med. 2020 Mar;41(1):1-24 [PMID: 32008623]
  36. Cancer Discov. 2019 Aug;9(8):1001-1002 [PMID: 31371323]
  37. Nat Commun. 2020 May 8;11(1):2285 [PMID: 32385277]
  38. Lancet. 2011 Nov 12;378(9804):1741-55 [PMID: 21565397]
  39. Cell Stem Cell. 2015 Sep 3;17(3):360-72 [PMID: 26299571]
  40. Nucleic Acids Res. 2019 Jan 8;47(D1):D33-D38 [PMID: 30204897]
  41. Nat Genet. 2011 Sep 04;43(10):932-9 [PMID: 21892159]
  42. Blood Adv. 2017 Nov 21;1(25):2348-2360 [PMID: 29296885]
  43. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  44. Lancet. 2011 Nov 12;378(9804):1727-40 [PMID: 21565398]
  45. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 [PMID: 27899662]
  46. Cell. 2017 May 4;169(4):570-586 [PMID: 28475890]
  47. Cancer Med. 2019 Jun;8(6):3072-3085 [PMID: 31033233]
  48. Nature. 2016 Mar 10;531(7593):253-7 [PMID: 26934227]
  49. J Immunol. 2011 Mar 15;186(6):3299-303 [PMID: 21317389]
  50. PLoS One. 2016 Oct 10;11(10):e0164535 [PMID: 27723773]
  51. Nat Med. 2018 Jul;24(7):978-985 [PMID: 29942094]
  52. Nucleic Acids Res. 2018 Jan 4;46(D1):D380-D386 [PMID: 29087512]
  53. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  54. Cell Metab. 2017 Nov 7;26(5):788-800.e6 [PMID: 28889950]
  55. Nat Cell Biol. 2015 Apr;17(4):351-9 [PMID: 25774832]
  56. N Engl J Med. 2019 Nov 21;381(21):2020-2031 [PMID: 31562796]
  57. Nature. 2017 May 4;545(7652):60-65 [PMID: 28397821]
  58. Nat Commun. 2019 Aug 21;10(1):3763 [PMID: 31434891]
  59. Cell. 2017 Dec 14;171(7):1611-1624.e24 [PMID: 29198524]
  60. CA Cancer J Clin. 2015 Mar;65(2):87-108 [PMID: 25651787]
  61. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  62. Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338 [PMID: 30395331]
  63. Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2934-2939 [PMID: 28246332]
  64. Trends Immunol. 2020 Mar;41(3):200-212 [PMID: 32035763]
  65. Comput Struct Biotechnol J. 2018 Nov 22;17:1-13 [PMID: 30581539]
  66. Sci Adv. 2016 May 27;2(5):e1600200 [PMID: 27386546]
  67. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Word Cloud

Created with Highcharts 10.0.0NSCLCsingle-cellmolecularfeaturesbiomarkersdatametabolicprognosticcellsgenescellRNA-seqheterogeneitycellularNon-smallcancersrevealedidentifyphenotypesresolutionstudyanalyzedomicskeyusingalgorithmmarkerepithelialintra-tissueT-celldifferentiationidentifiedlungcanceronecommonmalignanciesworldwidedevelopmenthigh-throughputRNA-sequencingtechnologyadventmulti-omicsprovidedsolidbasissystematicunderstandingAlthoughnumerousstudiesimportantvalidaterelatedspecificvalidatedintegratingmulti-levelHigh-throughputincluding4887geneexpressionprofilestissuespre-processingclustered12clusterst-SNEclusteringtypesdefinedaccordingMalignantexhibitindividualdifferencesfoundoxidativephosphorylationOXPHOSglycolyticpathwayactivitymajorcontributorsmalignantTFurthermoreconstructedtrajectoriesseveralregulatephenotypescreeningassociatedLassoCoxriskregressionfoursummarymarkersprovidesnovelfindingssignaturesCharacterizingMetabolicImmuneLandscapeCellLungCancerRevealsPrognosticBiomarkersOmicsDataIntegrationintegrationsinglesequencing

Similar Articles

Cited By