Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication.

Donald Davesne, Matt Friedman, Armin D Schmitt, Vincent Fernandez, Giorgio Carnevale, Per E Ahlberg, Sophie Sanchez, Roger B J Benson
Author Information
  1. Donald Davesne: Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom; donald.davesne@gmail.com roger.benson@earth.ox.ac.uk. ORCID
  2. Matt Friedman: Museum of Paleontology, University of Michigan, 48109 Ann Arbor, MI. ORCID
  3. Armin D Schmitt: Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom. ORCID
  4. Vincent Fernandez: European Synchrotron Radiation Facility, 38000 Grenoble, France. ORCID
  5. Giorgio Carnevale: Dipartimento di Scienze della Terra, Università degli Studi di Torino, 10125 Turin, Italy.
  6. Per E Ahlberg: Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden. ORCID
  7. Sophie Sanchez: European Synchrotron Radiation Facility, 38000 Grenoble, France.
  8. Roger B J Benson: Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom; donald.davesne@gmail.com roger.benson@earth.ox.ac.uk. ORCID

Abstract

Teleost fishes comprise one-half of all vertebrate species and possess a duplicated genome. This whole-genome duplication (WGD) occurred on the teleost stem lineage in an ancient common ancestor of all living teleosts and is hypothesized as a trigger of their exceptional evolutionary radiation. Genomic and phylogenetic data indicate that WGD occurred in the Mesozoic after the divergence of teleosts from their closest living relatives but before the origin of the extant teleost groups. However, these approaches cannot pinpoint WGD among the many extinct groups that populate this 50- to 100-million-y lineage, preventing tests of the evolutionary effects of WGD. We infer patterns of genome size evolution in fossil stem-group teleosts using high-resolution synchrotron X-ray tomography to measure the bone cell volumes, which correlate with genome size in living species. Our findings indicate that WGD occurred very early on the teleost stem lineage and that all extinct stem-group teleosts known so far possessed duplicated genomes. WGD therefore predates both the origin of proposed key innovations of the teleost skeleton and the onset of substantial morphological diversification in the clade. Moreover, the early occurrence of WGD allowed considerable time for postduplication reorganization prior to the origin of the teleost crown group. This suggests at most an indirect link between WGD and evolutionary success, with broad implications for the relationship between genomic architecture and large-scale evolutionary patterns in the vertebrate Tree of Life.

Keywords

References

  1. Microsc Microanal. 2012 Oct;18(5):1095-105 [PMID: 23026256]
  2. Bone. 2013 Nov;57(1):300-10 [PMID: 23954754]
  3. Nat Commun. 2014 Apr 22;5:3657 [PMID: 24755649]
  4. Proc Biol Sci. 2014 Apr 02;281(1783):20140321 [PMID: 24695431]
  5. Bioinformatics. 2019 Feb 1;35(3):526-528 [PMID: 30016406]
  6. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5218-23 [PMID: 19276106]
  7. Proc Biol Sci. 2014 Mar 19;281(1782):20140299 [PMID: 24648231]
  8. Biol Lett. 2018 Jun;14(6): [PMID: 29950318]
  9. Proc Biol Sci. 2014 Jan 22;281(1778):20132881 [PMID: 24452024]
  10. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8537-42 [PMID: 26124114]
  11. Mol Biol Evol. 2006 May;23(5):887-92 [PMID: 16368775]
  12. Biol Rev Camb Philos Soc. 2016 Nov;91(4):950-981 [PMID: 26105527]
  13. Nat Rev Genet. 2009 Oct;10(10):725-32 [PMID: 19652647]
  14. Nat Genet. 2016 Apr;48(4):427-37 [PMID: 26950095]
  15. Annu Rev Anim Biosci. 2018 Feb 15;6:47-68 [PMID: 29447475]
  16. Biol Rev Camb Philos Soc. 2019 Aug;94(4):1338-1363 [PMID: 30924235]
  17. Genome Res. 2017 Jun;27(6):1016-1028 [PMID: 28424354]
  18. Proc Biol Sci. 2007 Feb 22;274(1609):489-98 [PMID: 17476768]
  19. Proc Biol Sci. 2018 Dec 19;285(1893):20182010 [PMID: 30963906]
  20. Nat Commun. 2016 Mar 08;7:10825 [PMID: 26953824]
  21. Genome Res. 2003 Mar;13(3):382-90 [PMID: 12618368]
  22. Curr Biol. 2020 Sep 7;30(17):R1006-R1008 [PMID: 32898489]
  23. Basic Appl Histochem. 1983;27(4):227-56 [PMID: 6360135]
  24. Science. 1998 Nov 27;282(5394):1711-4 [PMID: 9831563]
  25. Mol Biol Evol. 2021 Jul 29;38(8):3308-3331 [PMID: 33871629]
  26. Proc Biol Sci. 2010 Jun 7;277(1688):1675-83 [PMID: 20133356]
  27. Biol Rev Camb Philos Soc. 2017 May;92(2):878-901 [PMID: 26970292]
  28. Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14918-23 [PMID: 26578810]
  29. Science. 2011 Sep 2;333(6047):1257 [PMID: 21852456]
  30. Mol Genet Genomics. 2014 Dec;289(6):1045-60 [PMID: 25092473]
  31. Biol Rev Camb Philos Soc. 2016 Feb;91(1):106-47 [PMID: 25431138]
  32. Nat Ecol Evol. 2018 Nov;2(11):1792-1799 [PMID: 30250158]
  33. Nat Commun. 2020 Nov 6;11(1):5636 [PMID: 33159071]
  34. BMC Evol Biol. 2009 Aug 08;9:194 [PMID: 19664233]
  35. J Evol Biol. 2020 Jun;33(6):808-830 [PMID: 32144878]
  36. PLoS One. 2013;8(2):e56992 [PMID: 23468901]
  37. Mol Plant. 2018 Mar 5;11(3):414-428 [PMID: 29317285]
  38. Nature. 2018 Jul;559(7714):392-395 [PMID: 29973726]
  39. Nat Commun. 2014 Jun 17;5:4194 [PMID: 24937202]
  40. Annu Rev Biophys Bioeng. 1982;11:273-302 [PMID: 7049065]
  41. Curr Biol. 2020 May 18;30(10):R485-R490 [PMID: 32428487]
  42. Trends Plant Sci. 2018 Oct;23(10):933-945 [PMID: 30122372]
  43. Proc Biol Sci. 2019 Sep 11;286(1910):20191502 [PMID: 31506051]
  44. Ecol Evol. 2021 Jan 19;11(4):1769-1796 [PMID: 33614003]
  45. Nat Ecol Evol. 2020 Jun;4(6):820-830 [PMID: 32313176]
  46. Curr Opin Genet Dev. 2008 Dec;18(6):544-50 [PMID: 19095434]
  47. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30): [PMID: 34301898]
  48. R Soc Open Sci. 2020 May 13;7(5):192260 [PMID: 32537214]
  49. Nature. 2007 Mar 8;446(7132):180-4 [PMID: 17344851]
  50. J Evol Biol. 2011 Feb;24(2):372-80 [PMID: 21091812]
  51. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11531-11536 [PMID: 27671652]
  52. Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):E1460-E1469 [PMID: 28179571]
  53. Evolution. 1997 Dec;51(6):1699-1711 [PMID: 28565128]

MeSH Term

Animals
Evolution, Molecular
Fishes
Fossils
Gene Duplication
Genome
Genomics
Phylogeny

Word Cloud

Created with Highcharts 10.0.0WGDteleostgenometeleostsevolutionaryoriginduplicationoccurredlineagelivingvertebratespeciesduplicatedwhole-genomestemancientindicategroupsextinctpatternssizeevolutionstem-groupcellearlyTeleostfishescompriseone-halfpossesscommonancestorhypothesizedtriggerexceptionalradiationGenomicphylogeneticdataMesozoicdivergenceclosestrelativesextantHoweverapproachespinpointamongmanypopulate50-100-million-ypreventingtestseffectsinferfossilusinghigh-resolutionsynchrotronX-raytomographymeasurebonevolumescorrelatefindingsknownfarpossessedgenomesthereforepredatesproposedkeyinnovationsskeletononsetsubstantialmorphologicaldiversificationcladeMoreoveroccurrenceallowedconsiderabletimepostduplicationreorganizationpriorcrowngroupsuggestsindirectlinksuccessbroadimplicationsrelationshipgenomicarchitecturelarge-scaleTreeLifeFossilizedstructuresidentifyosteocytespaleogenomicsteleostei

Similar Articles

Cited By