Representation learning of resting state fMRI with variational autoencoder.

Jung-Hoon Kim, Yizhen Zhang, Kuan Han, Zheyu Wen, Minkyu Choi, Zhongming Liu
Author Information
  1. Jung-Hoon Kim: Department of Biomedical Engineering, University of Michigan, United States; Weldon School of Biomedical Engineering, Purdue University, United States.
  2. Yizhen Zhang: Department of Electrical Engineering and Computer Science, University of Michigan, United States.
  3. Kuan Han: Department of Electrical Engineering and Computer Science, University of Michigan, United States.
  4. Zheyu Wen: Department of Electrical Engineering and Computer Science, University of Michigan, United States.
  5. Minkyu Choi: Department of Electrical Engineering and Computer Science, University of Michigan, United States.
  6. Zhongming Liu: Department of Biomedical Engineering, University of Michigan, United States; Department of Electrical Engineering and Computer Science, University of Michigan, United States. Electronic address: zmliu@umich.edu.

Abstract

Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity.

Keywords

References

  1. Nat Neurosci. 2016 Mar;19(3):356-65 [PMID: 26906502]
  2. IEEE Trans Cybern. 2021 Jan;51(1):233-246 [PMID: 31567112]
  3. Neuroimage. 2010 Mar;50(1):81-98 [PMID: 20006716]
  4. Sci Rep. 2017 Jan 12;7:40722 [PMID: 28079189]
  5. Nat Rev Neurosci. 2009 Oct;10(10):724-35 [PMID: 19763105]
  6. Netw Neurosci. 2020 May 01;4(2):448-466 [PMID: 32537536]
  7. Brain Connect. 2018 May;8(4):197-204 [PMID: 29634323]
  8. Hum Brain Mapp. 2001 May;13(1):43-53 [PMID: 11284046]
  9. Neuroimage. 2019 Sep;198:125-136 [PMID: 31103784]
  10. Neuroimage. 2009 Feb 1;44(3):893-905 [PMID: 18976716]
  11. Neuroimage. 2019 Feb 1;186:410-423 [PMID: 30453032]
  12. Magn Reson Imaging. 2019 Dec;64:101-121 [PMID: 31173849]
  13. Neuroimage. 2017 Dec;163:437-455 [PMID: 28916180]
  14. Nat Commun. 2020 Apr 20;11(1):1877 [PMID: 32312995]
  15. Am J Psychiatry. 2007 Mar;164(3):450-7 [PMID: 17329470]
  16. Neuroimage. 2015 Jan 1;104:398-412 [PMID: 25312773]
  17. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  18. PLoS Comput Biol. 2014 Nov 06;10(11):e1003915 [PMID: 25375136]
  19. Neuroimage. 2008 Apr 1;40(2):644-654 [PMID: 18234517]
  20. Front Neurosci. 2019 Oct 23;13:1136 [PMID: 31708731]
  21. IEEE Trans Biomed Eng. 2019 Oct;66(10):2768-2779 [PMID: 30703004]
  22. Elife. 2018 Mar 21;7: [PMID: 29561263]
  23. Neurocomputing (Amst). 2019 Jan 24;325:20-30 [PMID: 31354187]
  24. Nat Neurosci. 2019 Nov;22(11):1761-1770 [PMID: 31659335]
  25. IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 [PMID: 14964560]
  26. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4367-75 [PMID: 25267639]
  27. Neuroimage. 2020 Feb 1;206:116276 [PMID: 31610298]
  28. Neuroimage. 2013 Oct 15;80:105-24 [PMID: 23668970]
  29. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4518-23 [PMID: 27051064]
  30. Neuroimage. 2013 Oct 15;80:62-79 [PMID: 23684880]
  31. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 [PMID: 19620724]
  32. Neuroimage. 2011 Apr 1;55(3):856-67 [PMID: 21236349]
  33. Neuroimage. 2017 Feb 1;146:1038-1049 [PMID: 27693612]
  34. PLoS Comput Biol. 2005 Sep;1(4):e42 [PMID: 16201007]
  35. Magn Reson Imaging. 2009 Oct;27(8):1019-29 [PMID: 19375260]
  36. Front Neurosci. 2020 Aug 18;14:881 [PMID: 33013292]
  37. Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12574-12579 [PMID: 27791099]
  38. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 [PMID: 15976020]
  39. Sci Rep. 2018 Feb 28;8(1):3752 [PMID: 29491405]
  40. Neuron. 2018 May 2;98(3):630-644.e16 [PMID: 29681533]
  41. Netw Neurosci. 2019 Feb 01;3(2):363-383 [PMID: 30793087]
  42. Nat Commun. 2019 May 24;10(1):2317 [PMID: 31127095]
  43. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]
  44. Neuroimage. 2014 Jan 1;84:320-41 [PMID: 23994314]
  45. Neuroimage. 2019 Oct 1;199:651-662 [PMID: 31220576]
  46. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1-10 [PMID: 32833639]
  47. Front Neurosci. 2019 May 01;13:434 [PMID: 31118882]
  48. Med Image Comput Comput Assist Interv. 2018 Sep;11072:329-337 [PMID: 30873514]
  49. Neuroimage. 2015 Jul 1;114:158-69 [PMID: 25862264]
  50. Neuroimage. 2010 Feb 15;49(4):3110-21 [PMID: 19931396]
  51. Neuroimage. 2012 Oct 1;62(4):2190-200 [PMID: 22040739]
  52. Magn Reson Imaging. 2010 Oct;28(8):1058-65 [PMID: 20444566]
  53. Inf Process Med Imaging. 2019 Jun;11492:867-879 [PMID: 32699491]
  54. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3131-6 [PMID: 22323591]
  55. Med Image Comput Comput Assist Interv. 2020 Oct;12267:528-538 [PMID: 33257918]
  56. Nat Neurosci. 2015 Nov;18(11):1664-71 [PMID: 26457551]
  57. Neuroimage. 2020 Feb 15;207:116398 [PMID: 31783117]
  58. Trends Cogn Sci. 2019 Jun;23(6):488-509 [PMID: 31047813]
  59. Commun Biol. 2019 Nov 18;2:421 [PMID: 31754651]
  60. J Neurosci Methods. 2020 Apr 1;335:108506 [PMID: 32001294]
  61. Hum Brain Mapp. 2018 May;39(5):2269-2282 [PMID: 29436055]
  62. Nat Neurosci. 2017 Dec;20(12):1761-1769 [PMID: 29184204]
  63. Nat Rev Neurosci. 2007 Sep;8(9):700-11 [PMID: 17704812]
  64. Neuroimage. 2018 May 15;172:478-491 [PMID: 29391241]
  65. Neuroimage. 2020 Mar;208:116459 [PMID: 31837471]
  66. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5 [PMID: 17670949]
  67. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8762-7 [PMID: 26124112]
  68. Neuroimage. 2014 Apr 15;90:449-68 [PMID: 24389422]
  69. Neuroimage. 2014 Jul 15;95:232-47 [PMID: 24657355]
  70. Sci Rep. 2018 May 29;8(1):8254 [PMID: 29844466]
  71. Neuroimage. 2022 Nov 1;261:119526 [PMID: 35914669]
  72. IEEE Trans Med Imaging. 2018 Jul;37(7):1551-1561 [PMID: 28641247]
  73. Cereb Cortex. 2014 Mar;24(3):663-76 [PMID: 23146964]
  74. Nature. 2016 Aug 11;536(7615):171-178 [PMID: 27437579]
  75. Neuroimage. 2016 Apr 1;129:292-307 [PMID: 26774612]
  76. Hum Brain Mapp. 2020 Apr 15;41(6):1505-1519 [PMID: 31816152]
  77. J Neurophysiol. 2011 Sep;106(3):1125-65 [PMID: 21653723]
  78. Trends Cogn Sci. 2013 Aug;17(8):401-12 [PMID: 23876494]
  79. Neuroimage. 2012 Aug 15;62(2):774-81 [PMID: 22248573]
  80. Neuroimage. 2013 Oct 15;80:360-78 [PMID: 23707587]
  81. PLoS Comput Biol. 2019 Aug 21;15(8):e1007263 [PMID: 31433810]
  82. Front Neurosci. 2014 Aug 20;8:229 [PMID: 25191215]

Grants

  1. R01 AT011665/NCCIH NIH HHS
  2. R01 MH104402/NIMH NIH HHS

MeSH Term

Brain
Connectome
Databases, Factual
Humans
Individuality
Magnetic Resonance Imaging
Rest
Unsupervised Machine Learning

Word Cloud

Created with Highcharts 10.0.0activitylatentrsfMRIdatalearningstatemodelcorticalvariablespatternsvariationalgenerativeunsupervisedlargerepresentconnectivityrepresentationtrajectorygradientsrestingfMRIautoencoderRestingfunctionalmagneticresonanceimagingexhibitscomplexstructuredHoweverunderlyingoriginsunclearentangledestablishauto-encodertrainabledisentangleunknownsourcestrainedHumanConnectomeProjectlearnedgenerateusingspatiotemporalcharacteristicsreflectprincipaldrivechangesnetworksRepresentationalgeometrycapturedcovariancecorrelationrathercanusedreliablefeatureaccuratelyidentifysubjectsgroupevenshortperiodavailablesubjectresultsdemonstrateVAEvaluableadditionexistingtoolsparticularlysuitedRepresentationDeepLatentUnsupervisedVariational

Similar Articles

Cited By