L-Ascorbic Acid Shapes Bovine Serogroup A Infection.

Guangfu Zhao, Pan Li, Hao Mu, Nengzhang Li, Yuanyi Peng
Author Information
  1. Guangfu Zhao: Chongqing Key Laboratory of Forage and Herbivorce, College of Veterinary Medicine, Southwest University, Chongqing, China.
  2. Pan Li: Chongqing Key Laboratory of Forage and Herbivorce, College of Veterinary Medicine, Southwest University, Chongqing, China.
  3. Hao Mu: Chongqing Academy of Animal Science, Chongqing, China.
  4. Nengzhang Li: Chongqing Key Laboratory of Forage and Herbivorce, College of Veterinary Medicine, Southwest University, Chongqing, China.
  5. Yuanyi Peng: Chongqing Key Laboratory of Forage and Herbivorce, College of Veterinary Medicine, Southwest University, Chongqing, China.

Abstract

Bovine serogroup A (bovine PmA) is one of the most important pathogens causing fatal pneumonia in cattle. However, it is largely unknown how nutrition shapes bovine PmA infection. Here, we discovered that the infected lung held the highest bacterial density than other tissues during infection. By screening the different metabolites between high (lung)- and low (liver)-bacterial density tissues, the present work revealed that L-ascorbic acid and L-aspartic acid directly influenced bovine growth. Interestingly, L-ascorbic acid, which is expressed at higher levels in the infected livers, inhibited bovine PmA growth as well as virulence factor expression and promoted macrophage bactericidal activity . In addition, ascorbic acid synthesis was repressed upon bovine PmA infection, and supplementation with exogenous L-ascorbic acid significantly reduced the bacterial burden of the infected lungs and mouse mortality. Collectively, our study has profiled the metabolite difference of the murine lung and liver during bovine PmA infection. The screened L-ascorbic acid showed repression of bovine PmA growth and virulence expression and supplementation could significantly increase the survival rate of mice and reduce the bacterial load , which implied that L-ascorbic acid could serve as a potential protective agent for bovine PmA infection in clinic.

Keywords

References

  1. J Dairy Sci. 2017 Dec;100(12):10045-10060 [PMID: 29153154]
  2. Front Vet Sci. 2020 Aug 11;7:452 [PMID: 32851030]
  3. Naturwissenschaften. 1966 Jun;53(12):310 [PMID: 5986216]
  4. Ann Nutr Metab. 2006;50(2):85-94 [PMID: 16373990]
  5. Front Microbiol. 2017 Dec 22;8:2599 [PMID: 29317857]
  6. Can J Med Sci. 1952 Feb;30(1):48-53 [PMID: 14905333]
  7. Meat Sci. 2016 Mar;113:59-61 [PMID: 26613189]
  8. Am J Physiol Regul Integr Comp Physiol. 2003 Jul;285(1):R50-6 [PMID: 12637347]
  9. J Nutr. 1977 Aug;107(8):1507-12 [PMID: 328832]
  10. Antimicrob Agents Chemother. 2000 Sep;44(9):2452-7 [PMID: 10952594]
  11. J Comp Pathol. 2010 Feb-Apr;142(2-3):157-69 [PMID: 19951821]
  12. Eur J Clin Invest. 1994 Apr;24(4):229-35 [PMID: 8050451]
  13. J Vet Med Sci. 2014 Dec;76(12):1655-7 [PMID: 25649952]
  14. Microb Cell Fact. 2017 Jun 15;16(1):109 [PMID: 28619110]
  15. World J Crit Care Med. 2017 Feb 4;6(1):37-47 [PMID: 28224106]
  16. Trop Anim Health Prod. 2019 May;51(4):987-992 [PMID: 30535896]
  17. Front Microbiol. 2020 Aug 14;11:1972 [PMID: 32922380]
  18. J Neuroimmunol. 2012 Mar;244(1-2):32-4 [PMID: 22244572]
  19. Curr Top Microbiol Immunol. 2012;361:1-22 [PMID: 22643916]
  20. Microorganisms. 2021 Feb 19;9(2): [PMID: 33669791]
  21. Infect Immun. 1983 Feb;39(2):779-84 [PMID: 6832820]
  22. Vet Microbiol. 2013 Dec 27;167(3-4):737-41 [PMID: 24139632]
  23. Microbiol Res. 2015 May;174:1-8 [PMID: 25946323]
  24. Nat Commun. 2013;4:1881 [PMID: 23695675]
  25. Free Radic Res. 2001 Dec;35(6):907-16 [PMID: 11811541]
  26. Eur J Pharmacol. 2002 Aug 2;449(1-2):177-81 [PMID: 12163122]
  27. Biofouling. 2017 Jan;33(1):14-23 [PMID: 27892689]
  28. Sci Rep. 2016 Nov 21;6:37437 [PMID: 27869151]
  29. J Anim Sci. 2004 Jun;82(6):1764-72 [PMID: 15217004]
  30. Infect Immun. 2009 Aug;77(8):3150-60 [PMID: 19470746]
  31. Int Immunopharmacol. 2018 Dec;65:438-447 [PMID: 30388518]
  32. Infect Immun. 2019 Nov 18;87(12): [PMID: 31570555]
  33. Front Cell Infect Microbiol. 2017 Jun 20;7:251 [PMID: 28676843]
  34. mBio. 2017 May 9;8(3): [PMID: 28487428]
  35. Blood. 2003 Jul 1;102(1):336-43 [PMID: 12623840]
  36. BMC Infect Dis. 2016 Aug 20;16(1):435 [PMID: 27544345]
  37. Nutrients. 2017 Nov 03;9(11): [PMID: 29099763]
  38. J Neurochem. 2021 May;157(3):656-665 [PMID: 32797675]
  39. J Biol Chem. 1990 Feb 15;265(5):2584-7 [PMID: 2303417]
  40. Res Vet Sci. 2016 Apr;105:139-42 [PMID: 27033923]
  41. Infect Immun. 1990 Oct;58(10):3178-82 [PMID: 1976112]
  42. FEMS Microbiol Lett. 2017 Jan;364(1): [PMID: 27986825]
  43. Med J Aust. 1974 Feb 9;1(6):169-74 [PMID: 4206887]
  44. Oxid Med Cell Longev. 2011;2011:734319 [PMID: 22220218]
  45. Clin Diagn Lab Immunol. 1995 Mar;2(2):241-5 [PMID: 7697538]
  46. Vet Microbiol. 2012 Aug 17;158(3-4):360-6 [PMID: 22424868]
  47. J Comp Pathol. 2016 Jul;155(1):62-71 [PMID: 27338785]
  48. Animals (Basel). 2012 Apr 16;2(2):184-94 [PMID: 26486916]
  49. Vet Clin North Am Food Anim Pract. 1997 Nov;13(3):367-77 [PMID: 9368983]
  50. Asian-Australas J Anim Sci. 2012 May;25(5):597-605 [PMID: 25049602]
  51. Immunity. 2013 Nov 14;39(5):806-18 [PMID: 24238338]
  52. BMC Microbiol. 2020 Dec 3;20(1):369 [PMID: 33272193]
  53. Biol Pharm Bull. 2017;40(8):1199-1206 [PMID: 28769001]
  54. Free Radic Biol Med. 2004 Oct 15;37(8):1282-9 [PMID: 15451067]
  55. Int J Oncol. 2016 Sep;49(3):895-902 [PMID: 27573077]
  56. Amino Acids. 2013 Oct;45(4):947-55 [PMID: 23884693]
  57. Clin Infect Dis. 2017 Jun 15;64(suppl_3):S317-S327 [PMID: 28575365]
  58. Sci Rep. 2018 Aug 6;8(1):11718 [PMID: 30082877]
  59. PLoS Pathog. 2017 Jan 23;13(1):e1006161 [PMID: 28114430]
  60. Br J Nutr. 2013 Mar 14;109(5):867-72 [PMID: 22809580]
  61. Amino Acids. 2013 Sep;45(3):555-61 [PMID: 23584431]
  62. Clin Microbiol Rev. 2013 Jul;26(3):631-55 [PMID: 23824375]
  63. Science. 1999 May 21;284(5418):1318-22 [PMID: 10334980]
  64. Amino Acids. 2014 Oct;46(10):2365-75 [PMID: 24993936]
  65. Free Radic Biol Med. 2009 Apr 15;46(8):1221-32 [PMID: 19232538]
  66. Int J Med Microbiol. 2000 Mar;290(1):27-35 [PMID: 11043979]
  67. Microb Pathog. 2018 Feb;115:239-250 [PMID: 29274459]

Word Cloud

Created with Highcharts 10.0.0bovineacidPmAL-ascorbicinfectionBovineinfectedlungbacterialgrowthserogrouppneumoniadensitytissueslivervirulenceexpressionmacrophagesupplementationsignificantlyoneimportantpathogenscausingfatalcattleHoweverlargelyunknownnutritionshapesdiscoveredheldhighestscreeningdifferentmetaboliteshigh-low-bacterialpresentworkrevealedL-asparticdirectlyinfluencedInterestinglyexpressedhigherlevelsliversinhibitedwellfactorpromotedbactericidalactivityadditionascorbicsynthesisrepresseduponexogenousreducedburdenlungsmousemortalityCollectivelystudyprofiledmetabolitedifferencemurinescreenedshowedrepressionincreasesurvivalratemicereduceloadimpliedservepotentialprotectiveagentclinicL-AscorbicAcidShapesSerogroupInfectionPasteurellamultocidametabolomics

Similar Articles

Cited By (4)