Small Proteins; Big Questions.

Todd Gray, Gisela Storz, Kai Papenfort
Author Information
  1. Todd Gray: Wadsworth Centergrid.465543.5, New York State Department of Health, Albany, New York, USA.
  2. Gisela Storz: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA. ORCID
  3. Kai Papenfort: Institute of Microbiology, Friedrich Schiller University, Jena, Germany. ORCID

Abstract

In recent years, there has been increased appreciation that a whole category of proteins, small proteins of around 50 amino acids or fewer in length, has been missed by annotation as well as by genetic and biochemical assays. With the increased recognition that small proteins are stable within cells and have regulatory functions, there has been intensified study of these proteins. As a result, important questions about small proteins in bacteria and archaea are coming to the fore. Here, we give an overview of these questions, the initial answers, and the approaches needed to address these questions more fully. More detailed discussions of how small proteins can be identified by ribosome profiling and mass spectrometry approaches are provided by two accompanying reviews (N. Vazquez-Laslop, C. M. Sharma, A. S. Mankin, and A. R. Buskirk, J Bacteriol 204:e00294-21, 2022, https://doi.org/10.1128/JB.00294-21; C. H. Ahrens, J. T. Wade, M. M. Champion, and J. D. Langer, J Bacteriol 204:e00353-21, 2022, https://doi.org/10.1128/JB.00353-21). We are excited by the prospects of new insights and possible therapeutic approaches coming from this emerging field.

Keywords

References

  1. Nat Microbiol. 2017 Feb 13;2:17005 [PMID: 28191904]
  2. Mol Microbiol. 2016 Nov;102(3):430-445 [PMID: 27447896]
  3. Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20235-20243 [PMID: 32753384]
  4. Nature. 2005 Feb 3;433(7025):531-7 [PMID: 15690043]
  5. DNA Res. 2005;12(5):291-9 [PMID: 16769691]
  6. Cell. 2019 Aug 22;178(5):1245-1259.e14 [PMID: 31402174]
  7. Nat Rev Microbiol. 2013 Jul;11(7):435-42 [PMID: 23712350]
  8. Nature. 2017 Jun 29;546(7660):681-685 [PMID: 28636601]
  9. J Biol Chem. 2011 Sep 16;286(37):32464-74 [PMID: 21778229]
  10. Science. 2019 Jan 18;363(6424):257-260 [PMID: 30573545]
  11. Structure. 2020 Jun 2;28(6):625-634.e6 [PMID: 32348749]
  12. J Bacteriol. 2017 May 9;199(11): [PMID: 28289085]
  13. Trends Cell Biol. 2017 Sep;27(9):685-696 [PMID: 28528987]
  14. Toxins (Basel). 2021 Feb 09;13(2): [PMID: 33572271]
  15. Cell Rep. 2017 Jul 5;20(1):149-160 [PMID: 28683309]
  16. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  17. Science. 2009 Mar 6;323(5919):1354-7 [PMID: 19265022]
  18. FEBS Lett. 2014 May 2;588(9):1537-41 [PMID: 24681096]
  19. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16696-701 [PMID: 23010927]
  20. Microbiol Mol Biol Rev. 2008 Dec;72(4):579-89, Table of Contents [PMID: 19052321]
  21. Science. 2019 Oct 4;366(6461):100-104 [PMID: 31604309]
  22. J Bacteriol. 2022 Jan 18;204(1):e0034421 [PMID: 34516282]
  23. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  24. Life (Basel). 2020 Dec 01;10(12): [PMID: 33271798]
  25. Nucleic Acids Res. 2021 Apr 6;49(6):3003-3019 [PMID: 33706375]
  26. Trends Microbiol. 2021 Feb;29(2):98-106 [PMID: 32807623]
  27. Nucleic Acids Res. 2021 Mar 18;49(5):2894-2915 [PMID: 33619526]
  28. J Bacteriol. 2022 Jan 18;204(1):e0035321 [PMID: 34748388]
  29. PLoS Biol. 2020 Sep 30;18(9):e3000874 [PMID: 32997663]
  30. Science. 2016 Dec 16;354(6318): [PMID: 27980159]
  31. mBio. 2021 Mar 23;12(2): [PMID: 33758091]
  32. Proc Natl Acad Sci U S A. 2021 Feb 2;118(5): [PMID: 33509926]
  33. Brief Bioinform. 2013 Jan;14(1):1-12 [PMID: 22408191]
  34. Nat Rev Genet. 2014 Mar;15(3):193-204 [PMID: 24514441]
  35. EcoSal Plus. 2020 May;9(1): [PMID: 32385980]
  36. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1908-15 [PMID: 25825747]
  37. Nat Commun. 2020 Jun 29;11(1):3268 [PMID: 32601270]
  38. Future Microbiol. 2016;11(2):215-25 [PMID: 26849775]
  39. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  40. Chembiochem. 2020 Apr 17;21(8):1178-1187 [PMID: 31705614]
  41. Annu Rev Genet. 2017 Nov 27;51:311-333 [PMID: 28876981]
  42. Microbiol Mol Biol Rev. 2019 Jul 3;83(3): [PMID: 31270135]
  43. Microlife. 2020 Oct 17;1(1):uqaa002 [PMID: 37223003]
  44. mBio. 2019 Mar 5;10(2): [PMID: 30837344]
  45. Curr Genet. 2017 Dec;63(6):1011-1016 [PMID: 28560584]
  46. Brief Bioinform. 2018 Jul 20;19(4):636-643 [PMID: 28137767]
  47. Mol Microbiol. 2019 Jan;111(1):131-144 [PMID: 30276893]
  48. FEBS J. 2021 Sep;288(18):5350-5373 [PMID: 33660383]
  49. Cell Syst. 2017 Nov 22;5(5):518-526.e3 [PMID: 29102609]
  50. Nat Commun. 2020 Feb 7;11(1):781 [PMID: 32034123]
  51. EMBO J. 1994 Mar 1;13(5):1039-47 [PMID: 8131738]
  52. PLoS Genet. 2021 Jan 7;17(1):e1009227 [PMID: 33411736]
  53. Elife. 2017 Mar 29;6: [PMID: 28355133]
  54. Nature. 1994 May 26;369(6478):281 [PMID: 8183363]
  55. Mol Cell. 2012 Sep 28;47(6):897-908 [PMID: 22921935]
  56. J Bacteriol. 2022 Jan 18;204(1):e0031321 [PMID: 34543104]
  57. Microbiol Spectr. 2018 Sep;6(5): [PMID: 30191807]
  58. Front Microbiol. 2020 Jun 26;11:1445 [PMID: 32695088]
  59. Nature. 2017 Jan 26;541(7638):488-493 [PMID: 28099413]
  60. Nucleic Acids Res. 2020 Feb 20;48(3):1029-1042 [PMID: 31504789]
  61. Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21789-21799 [PMID: 31597735]
  62. Mol Syst Biol. 2019 Feb 22;15(2):e8290 [PMID: 30796087]
  63. Front Mol Biosci. 2020 May 13;7:78 [PMID: 32478092]
  64. Mol Cell. 2018 Jun 7;70(5):768-784 [PMID: 29398446]
  65. J Bacteriol. 2013 Aug;195(16):3640-50 [PMID: 23749980]
  66. J Bacteriol. 2022 Jan 18;204(1):e0029421 [PMID: 34339296]
  67. Mol Cell. 2019 May 2;74(3):481-493.e6 [PMID: 30904393]
  68. Nat Plants. 2021 Apr;7(4):524-538 [PMID: 33846594]
  69. EMBO J. 2008 Feb 6;27(3):546-57 [PMID: 18200043]
  70. Crit Rev Biochem Mol Biol. 2015 Mar-Apr;50(2):134-41 [PMID: 25857697]
  71. Adv Virus Res. 2019;103:33-70 [PMID: 30635077]

Grants

  1. R01 GM139277/NIGMS NIH HHS
  2. R01GM139277/NIH HHS
  3. /NICHD NIH HHS

MeSH Term

Amino Acid Sequence
Bacteria
Bacterial Proteins
Gene Expression Regulation, Bacterial
Genome, Bacterial
Open Reading Frames

Chemicals

Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0proteinssmallJquestionsapproachesMincreasedcomingCBacteriol2022https://doiorg/101128/JBrecentyearsappreciationwholecategoryaround50aminoacidsfewerlengthmissedannotationwellgeneticbiochemicalassaysrecognitionstablewithincellsregulatoryfunctionsintensifiedstudyresultimportantbacteriaarchaeaforegiveoverviewinitialanswersneededaddressfullydetaileddiscussionscanidentifiedribosomeprofilingmassspectrometryprovidedtwoaccompanyingreviewsNVazquez-LaslopSharmaSMankinRBuskirk204:e00294-2100294-21HAhrensTWadeChampionDLanger204:e00353-2100353-21excitedprospectsnewinsightspossibletherapeuticemergingfieldSmallProteinsBigQuestionsproteinevolutionproteometransmembrane

Similar Articles

Cited By