Violation of rhythmic expectancies can elicit late frontal gamma activity nested in theta oscillations.
M Edalati, M Mahmoudzadeh, J Safaie, F Wallois, S Moghimi
Author Information
M Edalati: Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.
M Mahmoudzadeh: Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.
J Safaie: Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.
F Wallois: Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.
S Moghimi: Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France. ORCID
中文译文
English
Rhythm processing involves building expectations according to the hierarchical temporal structure of auditory events. Although rhythm processing has been addressed in the context of predictive coding, the properties of the oscillatory response in different cortical areas are still not clear. We explored the oscillatory properties of the neural response to rhythmic incongruence and the cross-frequency coupling between multiple frequencies to further investigate the mechanisms underlying rhythm perception. We designed an experiment to investigate the neural response to rhythmic deviations in which the tone either arrived earlier than expected or the tone in the same metrical position was omitted. These two manipulations modulate the rhythmic structure differently, with the former creating a larger violation of the general structure of the musical stimulus than the latter. Both deviations resulted in an MMN response, whereas only the rhythmic deviant resulted in a subsequent P3a. Rhythmic deviants due to the early occurrence of a tone, but not omission deviants, seemed to elicit a late high gamma response (60-80 Hz) at the end of the P3a over the left frontal region, which, interestingly, correlated with the P3a amplitude over the same region and was also nested in theta oscillations. The timing of the elicited high-frequency gamma oscillations related to rhythmic deviation suggests that it might be related to the update of the predictive neural model, corresponding to the temporal structure of the events in higher-level cortical areas.
Neuroimage. 2003 Oct;20(2):1270-82
[PMID: 14568496 ]
Neuron. 2018 Jan 3;97(1):10-13
[PMID: 29301097 ]
Int J Neurosci. 1991 Oct;60(3-4):227-37
[PMID: 1787051 ]
Eur J Neurosci. 2019 Jun;49(12):1597-1609
[PMID: 30589481 ]
Cereb Cortex. 2005 May;15(5):646-53
[PMID: 15342432 ]
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6755-60
[PMID: 27247381 ]
Trends Cogn Sci. 2004 Aug;8(8):347-55
[PMID: 15335461 ]
Clin Neurophysiol. 2016 Apr;127(4):2065-77
[PMID: 26818879 ]
J Cogn Neurosci. 2020 Jul;32(7):1221-1241
[PMID: 31933432 ]
Cortex. 2009 Jan;45(1):93-102
[PMID: 19100973 ]
Neuron. 2018 Dec 5;100(5):1252-1266.e3
[PMID: 30482692 ]
Neuropsychologia. 2016 May;85:80-90
[PMID: 26972966 ]
Top Cogn Sci. 2012 Oct;4(4):625-52
[PMID: 22847872 ]
J Cogn Neurosci. 2002 Apr 1;14(3):430-42
[PMID: 11970802 ]
Hum Brain Mapp. 2012 Dec;33(12):2751-67
[PMID: 21932257 ]
Trends Cogn Sci. 1999 Apr;3(4):151-162
[PMID: 10322469 ]
Trends Cogn Sci. 2019 Jan;23(1):63-77
[PMID: 30471869 ]
Neuroimage. 2005 May 15;26(1):66-72
[PMID: 15862206 ]
Ann N Y Acad Sci. 2009 Jul;1169:93-6
[PMID: 19673760 ]
Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668):
[PMID: 25823866 ]
Front Hum Neurosci. 2017 Dec 06;11:591
[PMID: 29270118 ]
J Neurosci. 2018 Oct 3;38(40):8680-8693
[PMID: 30143578 ]
Physiol Rev. 2013 Apr;93(2):681-766
[PMID: 23589831 ]
Top Cogn Sci. 2012 Oct;4(4):585-606
[PMID: 22811317 ]
Front Psychol. 2015 Jul 29;6:1094
[PMID: 26284015 ]
J Neurosci. 2013 Jul 3;33(27):11194-205
[PMID: 23825422 ]
Neuroimage. 2003 Oct;20(2):816-27
[PMID: 14568454 ]
J Neurosci. 2015 Jun 24;35(25):9255-64
[PMID: 26109651 ]
J Neurophysiol. 2005 Sep;94(3):1904-11
[PMID: 15901760 ]
Biol Psychol. 2004 Apr;66(2):129-52
[PMID: 15041136 ]
Behav Brain Res. 2006 Apr 25;169(1):142-9
[PMID: 16455144 ]
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20754-9
[PMID: 22147913 ]
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20961-6
[PMID: 18087046 ]
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15443-8
[PMID: 24003165 ]
Nat Neurosci. 2015 Nov;18(11):1679-1686
[PMID: 26389842 ]
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33
[PMID: 20133762 ]
Science. 2004 Jun 25;304(5679):1926-9
[PMID: 15218136 ]
Comput Intell Neurosci. 2011;2011:156869
[PMID: 21253357 ]
Brain Res. 2007 Mar 30;1139:153-62
[PMID: 17270158 ]
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2468-71
[PMID: 19171894 ]
Neuroimage. 2010 Mar;50(1):302-13
[PMID: 20005297 ]
Neuroimage. 2018 Jul 15;175:111-121
[PMID: 29518565 ]
Nat Rev Neurosci. 2010 Feb;11(2):127-38
[PMID: 20068583 ]
Front Hum Neurosci. 2013 Jun 07;7:260
[PMID: 23759929 ]
Curr Biol. 2019 Dec 2;29(23):4084-4092.e4
[PMID: 31708393 ]
Sci Rep. 2018 Sep 18;8(1):14007
[PMID: 30228366 ]
Neuropsychologia. 2017 Jun;100:44-50
[PMID: 28389366 ]
J Neurosci. 2001 Aug 15;21(16):6329-37
[PMID: 11487656 ]
Cereb Cortex. 2005 May;15(5):545-51
[PMID: 15342438 ]
BMC Neurosci. 2003 Jun 26;4:13
[PMID: 12828789 ]
Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36
[PMID: 15937014 ]
Brain Res. 2008 Jul 18;1220:93-101
[PMID: 18076870 ]
Front Psychol. 2011 Jun 09;2:110
[PMID: 21713060 ]
Proc Biol Sci. 2014 Jul 7;281(1786):
[PMID: 24850915 ]
Cognition. 2003 Feb;87(1):B35-45
[PMID: 12499110 ]
PLoS One. 2011;6(6):e21493
[PMID: 21747907 ]
Annu Rev Neurosci. 2002;25:221-50
[PMID: 12052909 ]
J Neurosci. 2014 Jan 22;34(4):1127-32
[PMID: 24453305 ]
J Neurosci. 2019 Nov 20;39(47):9397-9409
[PMID: 31636112 ]
PLoS One. 2014 May 28;9(5):e97467
[PMID: 24870123 ]
Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1672-7
[PMID: 19164526 ]
PLoS One. 2013 Dec 17;8(12):e83255
[PMID: 24358266 ]
Front Neurosci. 2019 Feb 21;13:125
[PMID: 30846925 ]
J Cogn Neurosci. 1995 Spring;7(2):153-64
[PMID: 23961821 ]
Psychophysiology. 2021 Nov;58(11):e13909
[PMID: 34310719 ]
Cereb Cortex. 2015 Nov;25(11):4203-12
[PMID: 24969472 ]
Neuron. 2012 Nov 21;76(4):695-711
[PMID: 23177956 ]
J Neurosci. 2013 May 15;33(20):8633-9
[PMID: 23678108 ]
J Neurosci Methods. 2007 Aug 15;164(1):177-90
[PMID: 17517438 ]
Neuropsychologia. 2017 Nov;106:289-297
[PMID: 28987905 ]
Nat Rev Neurosci. 2011 Feb;12(2):105-18
[PMID: 21248789 ]
Neurosci Biobehav Rev. 2001 Jun;25(4):355-73
[PMID: 11445140 ]
Int J Psychophysiol. 2012 Feb;83(2):164-75
[PMID: 22245599 ]
Cortex. 2009 Jan;45(1):80-92
[PMID: 19054506 ]
Curr Biol. 2015 Aug 3;25(15):1966-74
[PMID: 26212883 ]
Neuroimage. 2004 Jun;22(2):521-9
[PMID: 15193580 ]
Front Psychol. 2014 Sep 23;5:1052
[PMID: 25295018 ]
J Neurophysiol. 2009 May;101(5):2620-31
[PMID: 19261714 ]
Neuroimage. 2016 Jan 1;124(Pt A):898-905
[PMID: 26436712 ]
Neuroimage. 2017 Feb 15;147:473-487
[PMID: 27915117 ]
Trends Cogn Sci. 2003 Sep;7(9):415-423
[PMID: 12963473 ]
Brain Res Cogn Brain Res. 2005 Jun;24(1):117-26
[PMID: 15922164 ]
Psychophysiology. 2019 Jun;56(6):e13335
[PMID: 30657176 ]
Science. 2006 Sep 15;313(5793):1626-8
[PMID: 16973878 ]
J Neurosci. 2016 Aug 10;36(32):8305-16
[PMID: 27511005 ]
Neuroimage. 2008 Aug 15;42(2):936-44
[PMID: 18602841 ]
Neuron. 2015 Oct 7;88(1):2-19
[PMID: 26447569 ]
Front Neurosci. 2018 Apr 18;12:218
[PMID: 29720932 ]
Cereb Cortex. 2002 Feb;12(2):212-21
[PMID: 11739268 ]
J Neurophysiol. 2010 Aug;104(2):1195-210
[PMID: 20463205 ]
Neuroimage. 2005 Jan 15;24(2):560-4
[PMID: 15627598 ]
J Neurosci Methods. 2004 Mar 15;134(1):9-21
[PMID: 15102499 ]
Science. 2006 Nov 24;314(5803):1311-4
[PMID: 17124325 ]
Adult
Anticipation, Psychological
Auditory Perception
Event-Related Potentials, P300
Evoked Potentials, Auditory
Female
Frontal Lobe
Gamma Rhythm
Humans
Male
Theta Rhythm
Time Perception
Young Adult