9-Cyanopyronin probe palette for super-multiplexed vibrational imaging.

Yupeng Miao, Naixin Qian, Lixue Shi, Fanghao Hu, Wei Min
Author Information
  1. Yupeng Miao: Department of Chemistry, Columbia University, New York, NY, USA. ORCID
  2. Naixin Qian: Department of Chemistry, Columbia University, New York, NY, USA.
  3. Lixue Shi: Department of Chemistry, Columbia University, New York, NY, USA. ORCID
  4. Fanghao Hu: Department of Chemistry, Columbia University, New York, NY, USA.
  5. Wei Min: Department of Chemistry, Columbia University, New York, NY, USA. wm2256@columbia.edu. ORCID

Abstract

Multiplexed optical imaging provides holistic visualization on a vast number of molecular targets, which has become increasingly essential for understanding complex biological processes and interactions. Vibrational microscopy has great potential owing to the sharp linewidth of vibrational spectra. In 2017, we demonstrated the coupling between electronic pre-resonant stimulated Raman scattering (epr-SRS) microscopy with a proposed library of 9-cyanopyronin-based dyes, named Manhattan Raman Scattering (MARS). Herein, we develop robust synthetic methodology to build MARS probes with different core atoms, expansion ring numbers, and stable isotope substitutions. We discover a predictive model to correlate their vibrational frequencies with structures, which guides rational design of MARS dyes with desirable Raman shifts. An expanded library of MARS probes with diverse functionalities is constructed. When coupled with epr-SRS microscopy, these MARS probes allow us to demonstrate not only many versatile labeling modalities but also increased multiplexing capacity. Hence, this work opens up next-generation vibrational imaging with greater utilities.

References

  1. J Am Chem Soc. 2012 Mar 21;134(11):5029-31 [PMID: 22390359]
  2. Nat Methods. 2014 Apr;11(4):410-2 [PMID: 24584195]
  3. Chem Soc Rev. 2010 Apr;39(4):1272-9 [PMID: 20349533]
  4. Acc Chem Res. 2016 Oct 18;49(10):2115-2126 [PMID: 27661761]
  5. Science. 2018 Aug 3;361(6401): [PMID: 30072512]
  6. Acc Chem Res. 2018 Mar 20;51(3):697-705 [PMID: 29443498]
  7. Nat Methods. 2014 Mar;11(3):313-8 [PMID: 24487583]
  8. Phys Biol. 2019 Apr 23;16(4):041003 [PMID: 30870829]
  9. Nat Commun. 2019 Oct 18;10(1):4764 [PMID: 31628307]
  10. Nat Chem Biol. 2014 Jul;10(7):512-23 [PMID: 24937069]
  11. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  12. J Histochem Cytochem. 2009 Oct;57(10):899-905 [PMID: 19365090]
  13. Analyst. 2015 Feb 7;140(3):685-95 [PMID: 25380094]
  14. Nat Commun. 2015 Sep 24;6:8390 [PMID: 26399630]
  15. Angew Chem Int Ed Engl. 2013 Jan 7;52(2):650-4 [PMID: 23169599]
  16. Chem Commun (Camb). 2018 Jan 7;54(2):152-155 [PMID: 29218356]
  17. J Am Chem Soc. 2014 Jun 4;136(22):8027-33 [PMID: 24849912]
  18. J Org Chem. 2019 Mar 1;84(5):2585-2595 [PMID: 30719911]
  19. Nat Methods. 2018 Mar;15(3):194-200 [PMID: 29334378]
  20. Curr Opin Chem Biol. 2013 Aug;17(4):637-43 [PMID: 23769339]
  21. Nat Chem. 2014 Aug;6(8):681-9 [PMID: 25054937]
  22. Nat Methods. 2017 Feb;14(2):149-152 [PMID: 28068315]
  23. Nat Methods. 2005 Dec;2(12):910-9 [PMID: 16299476]
  24. Angew Chem Int Ed Engl. 2016 Oct 24;55(44):13658-13699 [PMID: 27571316]
  25. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  26. Chem Sci. 2017 Apr 1;8(4):3080-3091 [PMID: 28451377]
  27. ACS Chem Biol. 2011 Jun 17;6(6):600-8 [PMID: 21375253]
  28. Science. 2006 Apr 14;312(5771):217-24 [PMID: 16614209]
  29. Nat Methods. 2016 Mar;13(3):257-62 [PMID: 26808668]
  30. Annu Rev Biochem. 2017 Jun 20;86:825-843 [PMID: 28399656]
  31. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  32. J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301 [PMID: 30001137]
  33. J Am Chem Soc. 2020 Dec 9;142(49):20701-20707 [PMID: 33225696]
  34. J Am Chem Soc. 2019 Feb 20;141(7):2770-2781 [PMID: 30550714]
  35. Anal Biochem. 1992 Jan;200(1):199-204 [PMID: 1595896]
  36. Nat Methods. 2016 Dec;13(12):985-988 [PMID: 27776112]
  37. ACS Appl Mater Interfaces. 2016 Sep 7;8(35):22953-62 [PMID: 27548811]

Grants

  1. R01 GM128214/NIGMS NIH HHS
  2. R01 GM132860/NIGMS NIH HHS

MeSH Term

Coloring Agents
HeLa Cells
Humans
Models, Chemical
Molecular Probes
Molecular Structure
Nonlinear Optical Microscopy
Optical Imaging
Pyronine
Spectrum Analysis, Raman
Vibration

Chemicals

Coloring Agents
Molecular Probes
pyronine B
Pyronine

Word Cloud

Created with Highcharts 10.0.0MARSvibrationalimagingmicroscopyRamanprobesepr-SRSlibrarydyesMultiplexedopticalprovidesholisticvisualizationvastnumbermoleculartargetsbecomeincreasinglyessentialunderstandingcomplexbiologicalprocessesinteractionsVibrationalgreatpotentialowingsharplinewidthspectra2017demonstratedcouplingelectronicpre-resonantstimulatedscatteringproposed9-cyanopyronin-basednamedManhattanScatteringHereindeveloprobustsyntheticmethodologybuilddifferentcoreatomsexpansionringnumbersstableisotopesubstitutionsdiscoverpredictivemodelcorrelatefrequenciesstructuresguidesrationaldesigndesirableshiftsexpandeddiversefunctionalitiesconstructedcoupledallowusdemonstratemanyversatilelabelingmodalitiesalsoincreasedmultiplexingcapacityHenceworkopensnext-generationgreaterutilities9-Cyanopyroninprobepalettesuper-multiplexed

Similar Articles

Cited By