Development of carbon dot-thiochrome-based sensing system for ratiometric fluorescence detection of D-penicillamine.

Maolin Wu, Nan Wang, Zihan Lin, Xingguang Su
Author Information
  1. Maolin Wu: Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
  2. Nan Wang: Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
  3. Zihan Lin: College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China.
  4. Xingguang Su: Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China. suxg@jlu.edu.cn.

Abstract

A simple and rapid ratiometric fluorescent sensing system for D-penicillamine (D-PA) determination is developed based on yellow carbon dots (Y-CDs) combined with thiochrome (oxVB) for the first time. The oxidization of thiamine (VB) can be catalyzed by Alkaline-hydrolyzed artemisinin (a-ART) to form oxVB, which leads to the occurrence of fluorescence emission peak at 466 nm. Furthermore, the oxidation reaction between a-ART and VB could be inhibited by D-PA, and accompanied with the decrease of fluorescence at 466 nm. However, the fluorescence peak of Y-CDs as an internal reference at 566 nm was almost unchanged. The ratiometric signal changes contributed to a robust and sensitive D-PA sensing. Under the optimal condition, a good linear response for the D-PA detection was obtained in the ranges of 0.5-50 μM with a detection limit of 0.33 μM. In addition, Y-CDs and thiochrome-based sensing system was applied to D-PA determination in real samples and obtained acceptable results. We developed a new carbon dots/thiochrome fluorescent nanoprobe for ratiometric fluorescence sensing of D-penicillamine.

Keywords

References

  1. Yan X, Li HX, Zheng WS, Su XG. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Anal Chem. 2015;87:8904–9. [DOI: 10.1021/acs.analchem.5b02037]
  2. Tan QQ, Zhang RR, Zhang GY, Liu XY, Qu FL, Lu LM. Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu. Anal Bioanal Chem. 2020;412:1317–24. [DOI: 10.1007/s00216-019-02353-5]
  3. Lee MH, Kim JS, Sessler JL. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev. 2015;44:4185–91. [DOI: 10.1039/C4CS00280F]
  4. Ru F, Du P, Lu X. Efficient ratiometric fluorescence probe utilizing silicon particles/gold nanoclusters nanohybrid for “on-off-on” bifunctional detection and cellular imaging of mercury (II) ions and cysteine. Anal Chim Acta. 2020;1105:139–46. [DOI: 10.1016/j.aca.2020.01.020]
  5. Wu XJ, Kong F, Zhao CQ, Ding SN. Ratiometric fluorescent nanosensors for ultra-sensitive detection of mercury ions based on AuNCs/MOFs. Analyst. 2019;144:2523–30. [DOI: 10.1039/C8AN02414F]
  6. Wang X, Sun X, Xu Z, Pan W, Yu G, Wang J. An ultrasmall chitosan nanosphere encapsulating carbon dots and rhodamine B as a ratiometric probe for the determination of Hg. Microchim Acta. 2020;187:655. [DOI: 10.1007/s00604-020-04627-7]
  7. Tan H, Wu X, Weng Y, Lu Y, Huang Z-Z. Self-assembled FRET nanoprobe with metal-organic framework as a scaffold for ratiometric detection of hypochlorous acid. Anal Chem. 2020;92:3447–54. [DOI: 10.1021/acs.analchem.9b05565]
  8. Wang Z, Li S, Zhou C, Sun Y, Pang H, Liu W, et al. Ratiometric fluorescent nanoprobe based on CdTe/SiO/folic acid/silver nanoparticles core-shell-satellite assembly for determination of 6-mercaptopurine. Microchim Acta. 2020;187:665. [DOI: 10.1007/s00604-020-04628-6]
  9. Peng B, Fan M, Xu J, Guo Y, Ma Y, Zhou M, et al. Dual-emission ratio fluorescent probes based on carbon dots and gold nanoclusters for visual and fluorescent detection of copper ions. Microchim Acta. 2020;187:660. [DOI: 10.1007/s00604-020-04641-9]
  10. Wang Y, Yang L, Liu B, Yu S, Jiang C. A colorimetric paper sensor for visual detection of mercury ions constructed with dual-emission carbon dots. New J Chem. 2018;42:15671–7. [DOI: 10.1039/C8NJ03683G]
  11. Cho M-J, Park S-Y. Carbon-dot-based ratiometric fluorescence glucose biosensor. Sensors Actuators B Chem. 2019;282:719–29. [DOI: 10.1016/j.snb.2018.11.055]
  12. Zhan Y, Zeng Y, Li L, Luo F, Qiu B, Lin Z, et al. Ratiometric fluorescent hydrogel test kit for on-spot visual detection of nitrite. ACS Sensors. 2019;4:1252–60. [DOI: 10.1021/acssensors.9b00125]
  13. Nejad MAF, Hormozi-Nezhad MR. Design of a ratiometric fluorescent probe for naked eye detection of dopamine. Anal Methods. 2017;9:3505–12. [DOI: 10.1039/C7AY00755H]
  14. Xu X, Cen Y, Xu G, Wei F, Shi M, Hu Q. A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood. Biosens Bioelectron. 2019;131:232–6. [DOI: 10.1016/j.bios.2019.02.031]
  15. Raoof J-B, Ojani R, Chekin F. Voltammetric sensor for D-penicillamine determination based on its electrocatalytic oxidation at the surface of ferrocenes modified carbon paste electrodes. J Chem Sci. 2009;121:1083–91. [DOI: 10.1007/s12039-009-0123-7]
  16. Yuan Y, Zhao X, Liu S, Li Y, Shi Y, Yan J, et al. A fluorescence switch sensor used for D-Penicillamine sensing and logic gate based on the fluorescence recovery of carbon dots. Sensors Actuators B Chem. 2016;236:565–73. [DOI: 10.1016/j.snb.2016.06.007]
  17. Naghdi T, Atashi M, Golmohammadi H, Saeedi I, Alanezhad M. Carbon quantum dots originated from chitin nanofibers as a fluorescent chemoprobe for drug sensing. J Ind Eng Chem. 2017;52:162–7. [DOI: 10.1016/j.jiec.2017.03.039]
  18. Zhang ZD, Baeyens WRG, Zhang XR, Van Der Weken G. Chemiluminescence determination of penicillamine via flow injection applying a quinine–cerium(IV) system. Analyst. 1996;121:1569–72. [DOI: 10.1039/AN9962101569]
  19. Li BL, Luo JH, Luo HQ, Li NB. A novel strategy for selective determination of D-penicillamine based on molecularly imprinted polypyrrole electrode via the electrochemical oxidation with ferrocyanide. Sensors Actuators B Chem. 2013;186:96–102. [DOI: 10.1016/j.snb.2013.05.091]
  20. Kusmierek K, Bald E. Simultaneous determination of tiopronin and D-penicillamine in human urine by liquid chromatography with ultraviolet detection. Anal Chim Acta. 2007;590:132–7. [DOI: 10.1016/j.aca.2007.03.025]
  21. Naik RM, Prasad S, Kumar B, Chand V. Kinetic assay of D-penicillamine in pure and pharmaceutical formulations based on ligand substitution reaction. Microchem J. 2013;111:97–102. [DOI: 10.1016/j.microc.2012.07.015]
  22. Yang X, Yuan H, Wang C, Su X, Hu L, Xiao D. Determination of penicillamine in pharmaceuticals and human plasma by capillary electrophoresis with in-column fiber optics light-emitting diode induced fluorescence detection. J Pharm Biomed Anal. 2007;45:362–6. [DOI: 10.1016/j.jpba.2007.05.017]
  23. Pawar SP, Gore AH, Walekar LS, Anbhule PV, Patil SR, Kolekar GB. Turn-on fluorescence probe for selective and sensitive detection of D-penicillamine by CdS quantum dots in aqueous media: application to pharmaceutical formulation. Sensors Actuators B Chem. 2015;209:911–8. [DOI: 10.1016/j.snb.2014.12.064]
  24. Yu H, Chen X, Yu L, Sun M, Alamry KA, Asiri AM, et al. Fluorescent MUA-stabilized Au nanoclusters for sensitive and selective detection of penicillamine. Anal Bioanal ChemAnal Bioanal Chem. 2018;410:2629–36. [DOI: 10.1007/s00216-018-0936-7]
  25. Wang Q, Li L, Wu T, Kong X, Ma Q, Ma C. A graphene quantum dots-Pb based fluorescent switch for selective and sensitive determination of D-penicillamine. Spectrochim Acta A. 2020;229:117924. [DOI: 10.1016/j.saa.2019.117924]
  26. Zou C, Foda MF, Tan X, Shao K, Wu L, Lu Z, et al. Carbon-dot and quantum-dot-coated dual-emission core-satellite silica nanoparticles for ratiometric intracellular Cu imaging. Anal Chem. 2016;88:7395–403. [DOI: 10.1021/acs.analchem.6b01941]
  27. Xu Y, Wei X, Li H, Zheng X, Lu K, Liu X, et al. Boric acid functionalized ratiometric fluorescence probe for sensitive and on-site naked eye determination of dopamine based on two different kinds of quantum dots. RSC Adv. 2016;6:72715–21. [DOI: 10.1039/C6RA11329J]
  28. Zhao J, Li F, Zhang S, An Y, Sun S. Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New J Chem. 2019;43:6332–42. [DOI: 10.1039/C8NJ06351F]
  29. Vedamalai M, Periasamy AP, Wang C-W, Tseng Y-T, Ho L-C, Shih C-C, et al. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu ions in cells. Nanoscale. 2014;6:13119–25. [DOI: 10.1039/C4NR03213F]
  30. Chao D, Lyu W, Liu Y, Zhou L, Zhang Q, Deng R, et al. Solvent-dependent carbon dots and their applications in the detection of water in organic solvents. J Mater Chem C. 2018;6:7527–32. [DOI: 10.1039/C8TC02184H]
  31. Jianzhong L, Zhujun Z, Ling L. A simplified enzyme-based fiber optic sensor for hydrogen peroxide and oxidase substrates. Talanta. 1994;41:1999–2002. [DOI: 10.1016/0039-9140(94)00135-9]
  32. Yao Z, Liu H, Liu Y, Zhang Q, Diao Y, Sun Y, et al. Fluorimetric determination of histidine by exploiting its inhibitory effect on the oxidation of thiamine by cobalt-containing Prussian Blue nanocubes. Microchim Acta. 2020;187:93. [DOI: 10.1007/s00604-019-3930-7]
  33. Ni P, Chen C, Jiang Y, Lu Y, Chen W. A simple and sensitive fluorescent assay for hemin detection based on artemisinin-thiamine. Sensors Actuators B Chem. 2018;273:198–203. [DOI: 10.1016/j.snb.2018.06.052]
  34. Gao Y, Tian M, Jia Y, Wang X, Yang L. Polyoxometalates as catalysts for fluorescence amplification in rapid and sensitive detection of artemisinin. Anal Chim Acta. 2021;1143:101–8. [DOI: 10.1016/j.aca.2020.11.035]
  35. Zou W, Gong F, Cao Z, Xia J, Gu T, Deng R. A simple and effective strategy for detecting artemisinin based on oxidative cyclization of vitamin B eliciting fluorescence turn-on. Anal Methods. 2019;11:88–96. [DOI: 10.1039/C8AY02312C]
  36. Hu X, Liu X, Zhang X, Cao H, Huang Y. MnO nanowires tuning of photoluminescence of alloy Cu/Ag NCs and thiamine enables a ratiometric fluorescent sensing of glutathione. Sensors Actuators B Chem. 2019;286:476–82. [DOI: 10.1016/j.snb.2019.02.010]
  37. Xiao T, Wang S, Yan M, Huang J, Yang X. A thiamine-triggered fluormetric assay for acetylcholinesterase activity and inhibitor screening based on oxidase-like activity of MnO nanosheets. Talanta. 2021;221:121362. [DOI: 10.1016/j.talanta.2020.121362]
  38. Zhang J, Liu J, Wang M, Su X. Determination of ascorbic acid and ascorbate oxidase based on quaternary CuInZnS QDs/thiochrome ratiometric fluorescence sensing system. Talanta. 2020;214:120814. [DOI: 10.1016/j.talanta.2020.120814]
  39. Netter P, Bannwarth B, Pere P, Nicolas A. Clinical pharmacokinetics of D-penicillamine. Clin Pharmacokinet. 1987;13:317–33. [DOI: 10.2165/00003088-198713050-00003]

Grants

  1. No. 21775052/National Natural Science Foundation of China
  2. No. 20180414013GH/Science and Technology Development project of Jilin province, China
  3. No. 21575048/National Natural Science Foundation of China

MeSH Term

Carbon
Catalysis
Humans
Limit of Detection
Penicillamine
Quantum Dots
Spectroscopy, Fourier Transform Infrared
Thiamine

Chemicals

thiochrome
Carbon
Penicillamine
Thiamine

Word Cloud

Created with Highcharts 10.0.0fluorescencesensingD-PAratiometricsystemD-penicillaminecarbonY-CDsdetectionfluorescentdeterminationdevelopeddotsoxVBVBa-ARTpeak466 nmobtained0simplerapidbasedyellowcombinedthiochromefirsttimeoxidizationthiaminecancatalyzedAlkaline-hydrolyzedartemisininformleadsoccurrenceemissionFurthermoreoxidationreactioninhibitedaccompanieddecreaseHoweverinternalreference566 nmalmostunchangedsignalchangescontributedrobustsensitiveoptimalconditiongoodlinearresponseranges5-50 μMlimit33 μMadditionthiochrome-basedappliedrealsamplesacceptableresultsnewdots/thiochromenanoprobeDevelopmentdot-thiochrome-basedArtemisininCarbonD-PenicillamineRatiometricThiamine

Similar Articles

Cited By