Modelling cassava production and pest management under biotic and abiotic constraints.

Vasthi Alonso Chavez, Alice E Milne, Frank van den Bosch, Justin Pita, C Finn McQuaid
Author Information
  1. Vasthi Alonso Chavez: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK. vasthi.alonso-chavez@rothamsted.ac.uk. ORCID
  2. Alice E Milne: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK.
  3. Frank van den Bosch: School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
  4. Justin Pita: Laboratory of Plant Physiology, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.
  5. C Finn McQuaid: Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.

Abstract

KEY MESSAGE: We summarise modelling studies of the most economically important cassava diseases and arthropods, highlighting research gaps where modelling can contribute to the better management of these in the areas of surveillance, control, and host-pest dynamics understanding the effects of climate change and future challenges in modelling. For over 30 years, experimental and theoretical studies have sought to better understand the epidemiology of cassava diseases and arthropods that affect production and lead to considerable yield loss, to detect and control them more effectively. In this review, we consider the contribution of modelling studies to that understanding. We summarise studies of the most economically important cassava pests, including cassava mosaic disease, cassava brown streak disease, the cassava mealybug, and the cassava green mite. We focus on conceptual models of system dynamics rather than statistical methods. Through our analysis we identified areas where modelling has contributed and areas where modelling can improve and further contribute. Firstly, we identify research challenges in the modelling developed for the surveillance, detection and control of cassava pests, and propose approaches to overcome these. We then look at the contributions that modelling has accomplished in the understanding of the interaction and dynamics of cassava and its' pests, highlighting success stories and areas where improvement is needed. Thirdly, we look at the possibility that novel modelling applications can achieve to provide insights into the impacts and uncertainties of climate change. Finally, we identify research gaps, challenges, and opportunities where modelling can develop and contribute for the management of cassava pests, highlighting the recent advances in understanding molecular mechanisms of plant defence.

Keywords

References

  1. Annu Rev Phytopathol. 2020 Aug 25;58:77-96 [PMID: 32403981]
  2. Virus Res. 2011 Aug;159(2):161-70 [PMID: 21549776]
  3. Virus Res. 2017 Sep 15;241:236-253 [PMID: 28487059]
  4. Mol Plant Pathol. 2012 Aug;13(6):614-29 [PMID: 22672649]
  5. Epidemics. 2015 Mar;10:6-10 [PMID: 25843374]
  6. Science. 2019 Jun 28;364(6447):1237-1239 [PMID: 31249049]
  7. Proc Biol Sci. 2015 Sep 7;282(1814): [PMID: 26336177]
  8. Annu Rev Phytopathol. 2017 Aug 4;55:591-610 [PMID: 28637378]
  9. J Theor Biol. 2019 Jan 14;461:8-16 [PMID: 30342894]
  10. Ecol Modell. 2016 Mar 24;324:28-32 [PMID: 27019546]
  11. Plants (Basel). 2020 Dec 14;9(12): [PMID: 33327457]
  12. New Phytol. 2017 May;214(3):1317-1329 [PMID: 28370154]
  13. Virus Res. 2014 Jun 24;186:61-75 [PMID: 24291251]
  14. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11511-6 [PMID: 12972639]
  15. Sci Rep. 2020 Dec 16;10(1):22049 [PMID: 33328547]
  16. J Theor Biol. 2016 Aug 21;403:129-142 [PMID: 27188250]
  17. Annu Rev Phytopathol. 1999 Sep;37:399-426 [PMID: 11701829]
  18. Ecology. 2017 Aug;98(8):2145-2157 [PMID: 28555726]
  19. Curr Opin Plant Biol. 2017 Aug;38:50-58 [PMID: 28477536]
  20. Phytopathology. 2000 Jun;90(6):576-94 [PMID: 18944537]
  21. PLoS One. 2012;7(10):e47675 [PMID: 23077659]
  22. Trends Plant Sci. 1999 Nov;4(11):452-457 [PMID: 10529827]
  23. PLoS One. 2011;6(12):e29067 [PMID: 22174952]
  24. Front Plant Sci. 2017 Oct 25;8:1806 [PMID: 29118773]
  25. J Gen Virol. 2000 Jan;81(Pt 1):287-97 [PMID: 10640569]
  26. PLoS Comput Biol. 2015 Apr 13;11(4):e1004211 [PMID: 25874622]
  27. Commun Biol. 2019 Jan 7;2:10 [PMID: 30623106]
  28. Phytopathology. 2000 Jan;90(1):85-93 [PMID: 18944576]
  29. PLoS Comput Biol. 2017 Apr 3;13(4):e1005470 [PMID: 28369082]
  30. Phytopathology. 2021 Nov;111(11):1952-1962 [PMID: 33856231]
  31. PLoS Comput Biol. 2020 Mar 16;16(3):e1007724 [PMID: 32176681]
  32. PLoS One. 2018 Aug 8;13(8):e0201803 [PMID: 30089159]
  33. Bull Entomol Res. 2015 Apr;105(2):173-81 [PMID: 25523908]
  34. Plant Physiol. 2016 Oct;172(2):650-660 [PMID: 27443602]
  35. BMC Syst Biol. 2008 Mar 26;2:28 [PMID: 18366769]
  36. PLoS One. 2017 Mar 15;12(3):e0173265 [PMID: 28296903]
  37. J Theor Biol. 2012 Sep 21;309:47-57 [PMID: 22659041]
  38. Adv Virus Res. 2006;67:163-203 [PMID: 17027680]
  39. J Theor Biol. 2012 Jul 21;305:30-6 [PMID: 22480434]
  40. R Soc Open Sci. 2017 Dec 6;4(12):170721 [PMID: 29308222]
  41. Ecology. 2019 Jul;100(7):e02725 [PMID: 30980528]
  42. Pest Manag Sci. 2016 Jun;72(6):1071-89 [PMID: 26853194]
  43. Front Plant Sci. 2019 Mar 20;10:272 [PMID: 30949185]
  44. PLoS One. 2019 Feb 22;14(2):e0212780 [PMID: 30794679]
  45. Proc Biol Sci. 2007 Jan 7;274(1606):11-8 [PMID: 17018429]
  46. Phytopathology. 2017 Oct;107(10):1229-1242 [PMID: 28714353]
  47. Plant Pathol. 2016 Feb;65(2):299-309 [PMID: 27478253]
  48. Annu Rev Phytopathol. 2016 Aug 4;54:189-205 [PMID: 27491434]
  49. Annu Rev Phytopathol. 2008;46:303-26 [PMID: 18680427]
  50. J Econ Entomol. 2016 Apr;109(2):487-501 [PMID: 26637536]
  51. Phytopathology. 2019 Sep;109(9):1519-1532 [PMID: 30785374]
  52. Adv Virus Res. 2014;90:147-206 [PMID: 25410102]
  53. Exp Appl Acarol. 2015 Feb;65(2):195-204 [PMID: 25491291]
  54. J R Soc Interface. 2010 Sep 6;7(50):1247-56 [PMID: 20504800]
  55. Plant Dis. 2018 May;102(5):837-854 [PMID: 30673389]
  56. Phytopathology. 2004 Oct;94(10):1136-44 [PMID: 18943803]
  57. Data Brief. 2018 May 19;19:370-392 [PMID: 29892658]
  58. Adv Virus Res. 2015;91:85-142 [PMID: 25591878]
  59. PLoS Comput Biol. 2017 Jul 26;13(7):e1005654 [PMID: 28746374]
  60. Am Nat. 2018 Jul;192(1):23-34 [PMID: 29897804]
  61. Phytopathology. 2010 Jul;100(7):638-44 [PMID: 20528181]
  62. Pest Manag Sci. 2020 Aug;76(8):2699-2710 [PMID: 32162459]
  63. Annu Rev Phytopathol. 2008;46:385-418 [PMID: 18680429]
  64. Front Plant Sci. 2017 Oct 27;8:1852 [PMID: 29163582]
  65. Environ Entomol. 2013 Dec;42(6):1299-308 [PMID: 24246613]
  66. Bull Math Biol. 2020 Jul 16;82(7):94 [PMID: 32676825]
  67. Virus Res. 2004 Mar;100(1):5-30 [PMID: 15036832]
  68. Mol Plant Pathol. 2018 May;19(5):1282-1294 [PMID: 28887856]
  69. Phytopathology. 2017 Oct;107(10):1123-1135 [PMID: 28545348]
  70. Ann Bot. 2017 Mar 01;119(5):711-723 [PMID: 27780814]
  71. J Virol Methods. 2010 Feb;163(2):353-9 [PMID: 19879299]
  72. J Biol Dyn. 2019;13(sup1):325-353 [PMID: 31149889]
  73. Adv Virus Res. 2006;67:355-418 [PMID: 17027685]
  74. PLoS One. 2012;7(9):e45277 [PMID: 23049780]
  75. Adv Virus Res. 2006;67:297-316 [PMID: 17027683]
  76. J R Soc Interface. 2011 Feb 6;8(55):257-68 [PMID: 20573628]

Grants

  1. BB/P022480/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Manihot
Pest Control
Plant Diseases

Word Cloud

Created with Highcharts 10.0.0cassavamodellingstudiescanareasunderstandingpestshighlightingresearchcontributemanagementcontroldynamicschallengessummariseeconomicallyimportantdiseasesarthropodsgapsbettersurveillanceclimatechangeproductiondiseaseidentifylookModellingKEYMESSAGE:host-pesteffectsfuture30 yearsexperimentaltheoreticalsoughtunderstandepidemiologyaffectleadconsiderableyieldlossdetecteffectivelyreviewconsidercontributionincludingmosaicbrownstreakmealybuggreenmitefocusconceptualmodelssystemratherstatisticalmethodsanalysisidentifiedcontributedimproveFirstlydevelopeddetectionproposeapproachesovercomecontributionsaccomplishedinteractionits'successstoriesimprovementneededThirdlypossibilitynovelapplicationsachieveprovideinsightsimpactsuncertaintiesFinallyopportunitiesdeveloprecentadvancesmolecularmechanismsplantdefencepestbioticabioticconstraintsCassavaDynamicsPestsSurveillanceSystem

Similar Articles

Cited By (3)