SSR marker-based genetic diversity analysis and SNP haplotyping of genes associating abiotic and biotic stress tolerance, rice growth and development and yield across 93 rice landraces.

Smitha Kunhiraman Vasumathy, Manickavelu Alagu
Author Information
  1. Smitha Kunhiraman Vasumathy: Department of Genomic Science, Central University of Kerala, Periye, Kasaragod, Kerala, 671316, India.
  2. Manickavelu Alagu: Department of Genomic Science, Central University of Kerala, Periye, Kasaragod, Kerala, 671316, India. amanicks@cukerala.ac.in. ORCID

Abstract

BACKGROUND: As rice is the staple food for more than half of the world's population, enhancing grain yield irrespective of the variable climatic conditions is indispensable. Many traditionally cultivated rice landraces are well adapted to severe environmental conditions and have high genetic diversity that could play an important role in crop improvement.
METHODS AND RESULTS: The present study revealed a high level of genetic diversity among the unexploited rice landraces cultivated by the farmers of Kerala. Twelve polymorphic markers detected a total of seventy- seven alleles with an average of 6.416 alleles per locus. Polymorphic Information Content (PIC) value ranged from 0.459 to 0.809, and to differentiate the rice genotypes, RM 242 was found to be the most appropriate marker with a high value of 0.809. The current study indicated that the rice landraces are highly diverse with higher values of the adequate number of alleles, PIC, and Shannon information index. Utilizing these informative SSR markers for future molecular characterization and population genetic studies in rice landraces are advisable. Haplotypes are sets of genomic regions within a chromosome inherited together, and haplotype-based breeding is a promising strategy for designing next-generation rice varieties. Here, haplotype analysis explored 270 haplotype blocks and 775 haplotypes from all the chromosomes of landraces under study. The number of SNPs in each haplotype block ranged from two to 28. Haplotypes of genes related to biotic and abiotic stress tolerance, yield-enhancing, and growth and development in rice landraces were also elucidated in the current study.
CONCLUSIONS: The present investigation revealed the genetic diversity of rice landraces and the haplotype analysis will open the way for genome-wide association studies, QTL identification, and marker-assisted selection in the unexplored rice landraces collected from Kerala.

Keywords

References

  1. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:1–8. https://doi.org/10.1371/journal.pone.0066428 [DOI: 10.1371/journal.pone.0066428]
  2. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822 [DOI: 10.1126/science.1183700]
  3. Casañas F, Simó J, Casals J, Prohens J (2017) Toward an evolved concept of landrace. Front Plant Sci 08:145. https://doi.org/10.3389/fpls.2017.00145 [DOI: 10.3389/fpls.2017.00145]
  4. Cui D, Lu H, Tang C et al (2020) Genomic analyses reveal selection footprints in rice landraces grown under on-farm conservation conditions during a short-term period of domestication. Evol Appl 13:290–302. https://doi.org/10.1111/eva.12866 [DOI: 10.1111/eva.12866]
  5. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560 [DOI: 10.1016/j.tplants.2003.09.010]
  6. Yonemaru J, Yamamoto T, Ebana K et al (2012) Genome-wide haplotype changes produced by artificial selection during modern rice breeding in Japan. PLoS ONE 7:e32982. https://doi.org/10.1371/journal.pone.0032982 [DOI: 10.1371/journal.pone.0032982]
  7. Nyine M, Wang S, Kiani K et al (2019) Genotype imputation in winter wheat using first-generation haplotype map SNPs improves genome-wide association mapping and genomic prediction of traits. G3 Genes. Genomes, Genet 9:125–133. https://doi.org/10.1534/g3.118.200664 [DOI: 10.1534/g3.118.200664]
  8. Resende MDV, Resende MFR, Sansaloni CP et al (2012) Genomic selection for growth and wood quality in eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128. https://doi.org/10.1111/j.1469-8137.2011.04038.x [DOI: 10.1111/j.1469-8137.2011.04038.x]
  9. Abbai R, Singh VK, Nachimuthu VV et al (2019) Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains. Plant Biotechnol J 17:1612–1622. https://doi.org/10.1111/pbi.13087 [DOI: 10.1111/pbi.13087]
  10. Nanayakkara NHLDLD, Herath V, Jayatilake DV (2018) Haplotype diversity analysis of bacterial leaf blight resistance gene Xa21 in rice. Trop Agric Res 30:56. https://doi.org/10.4038/tar.v30i1.8278 [DOI: 10.4038/tar.v30i1.8278]
  11. Snyder MW, Adey A, Kitzman JO, Shendure J (2015) Haplotype-resolved genome sequencing: experimental methods and applications. Nat Rev Genet 16:344–358 [DOI: 10.1038/nrg3903]
  12. Doyle J, Focus JD (1990) Isolation ofplant DNA from fresh tissue. Focus 12:13–15
  13. Liu K, Muse SV (2005) PowerMaker: an integrated analysis environment for genetic maker analysis. Bioinformatics 21:2128–2129. https://doi.org/10.1093/bioinformatics/bti282 [DOI: 10.1093/bioinformatics/bti282]
  14. Perrier X, Jaccqemoud, Collet J (2006) DARwin - dissimilarity analysis and representation for windows. http://darwin.cirad.fr/
  15. Peakall R, Smouse PE (2012) GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460 [DOI: 10.1093/bioinformatics/bts460]
  16. Vasumathy SK, Peringottillam M, Sundaram KT et al (2020) Genome- wide structural and functional variant discovery of rice landraces using genotyping by sequencing. Mol Biol Rep 47:7391–7402. https://doi.org/10.1007/s11033-020-05794-9 [DOI: 10.1007/s11033-020-05794-9]
  17. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. https://doi.org/10.1093/bioinformatics/bth457 [DOI: 10.1093/bioinformatics/bth457]
  18. Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229. https://doi.org/10.1126/science.1069424 [DOI: 10.1126/science.1069424]
  19. Ahmad F, Hanafi MM, Hakim MA et al (2015) Genetic divergence and heritability of 42 coloured upland rice genotypes (Oryzasativa) as revealed by microsatellites marker and agro-morphological traits. PLoS ONE 10:e0138246. https://doi.org/10.1371/journal.pone.0138246 [DOI: 10.1371/journal.pone.0138246]
  20. Shakil S, Shahanaz S, Hasan MM, Prodhan SH (2015) SSR marker based genetic diversity analysis of modem rice varieties and coastal landraces in Bangladesh. Indian J Biotechnol 14:33–41
  21. Kumar S, Bisht IS, Bhat KV (2010) Assessment of genetic diversity among rice (Oryza sativa L.) landrace populations under traditional production using microsatellite (SSR) markers-Indian Journals. Electron J Plant Breed 1:474–483
  22. Hossain MZ, Rasul MG, Ali MS et al (2007) Molecular characterization and genetic diversity in fine grain and aromatic landraces of rice (Oryza sativa l.) using microsatellite markers. Bangladesh J Plant Breed Genet 20:01–10. https://doi.org/10.3329/bjpbg.v20i2.17028 [DOI: 10.3329/bjpbg.v20i2.17028]
  23. Rashmi D, Bisen P, Saha S et al (2017) Genetic diversity analysis in rice (Oryza sativa L.) Accessions using SSR markers. Int J Agric Environ Biotechnol 10:457. https://doi.org/10.5958/2230-732x.2017.00057.2 [DOI: 10.5958/2230-732x.2017.00057.2]
  24. Getachew M, Shilai Z, Teklehaymanot H (2018) Comparative evaluation of rice SSR markers on different oryza species. J Rice Res Dev. https://doi.org/10.36959/973/418 [DOI: 10.36959/973/418]
  25. Aljumaili SJ, Rafii MY, Latif MA et al (2018) Genetic diversity of aromatic rice germplasm revealed by SSR markers. Biomed Res Int. https://doi.org/10.1155/2018/7658032 [DOI: 10.1155/2018/7658032]
  26. Singh N, Choudhury DR, Singh AK et al (2013) Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS ONE 8:e84136. https://doi.org/10.1371/journal.pone.0084136 [DOI: 10.1371/journal.pone.0084136]
  27. Yamamoto T, Nagasaki H, Yonemaru J-I et al (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:1–14 [DOI: 10.1186/1471-2164-11-267]
  28. Hsu KH, Liu CC, Wu SJ et al (2014) Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening. Plant Mol Biol 86:125–137. https://doi.org/10.1007/s11103-014-0217-6 [DOI: 10.1007/s11103-014-0217-6]
  29. Liu S, Cheng Y, Zhang X et al (2007) Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol Biol 64:49–58. https://doi.org/10.1007/s11103-007-9133-3 [DOI: 10.1007/s11103-007-9133-3]
  30. Kim JH, Lim SD, Jang CS (2020) Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression. Plant Mol Biol 103:235–252. https://doi.org/10.1007/s11103-020-00989-x [DOI: 10.1007/s11103-020-00989-x]
  31. Park YC, Lim SD, Moon JC, Jang CS (2019) A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins. Plant Cell Environ 42:3061–3076. https://doi.org/10.1111/pce.13619 [DOI: 10.1111/pce.13619]
  32. Xu K, Chen S, Li T et al (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15:141. https://doi.org/10.1186/s12870-015-0532-3 [DOI: 10.1186/s12870-015-0532-3]
  33. Wang F, Deng M, Chen J et al (2020) CASEIN KINASE2-dependent phosphorylation of PHOSPHATE2 fine-tunes phosphate homeostasis in rice1. Plant Physiol 183:250–262. https://doi.org/10.1104/pp.20.00078 [DOI: 10.1104/pp.20.00078]
  34. Yang J, Chang Y, Qin Y et al (2020) A lamin-like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice. New Phytol 227:65–83. https://doi.org/10.1111/nph.16518 [DOI: 10.1111/nph.16518]
  35. Hwang SG, Chapagain S, Han AR et al (2017) Molecular characterization of rice arsenic-induced RING finger E3 ligase 2 (OsAIR2) and its heterogeneous overexpression in Arabidopsis thaliana. Physiol Plant 161:372–384. https://doi.org/10.1111/ppl.12607 [DOI: 10.1111/ppl.12607]
  36. Yang W, Zhang B, Qi G et al (2019) Identification of the phytosulfokine receptor 1 (OsPSKR1) confers resistance to bacterial leaf streak in rice. Planta 250:1603–1612. https://doi.org/10.1007/s00425-019-03238-8 [DOI: 10.1007/s00425-019-03238-8]
  37. Marla SS, Singh VK (2012) LOX genes in blast fungus (Magnaporthe grisea) resistance in rice. Funct Integr Genomics 12:265–275. https://doi.org/10.1007/s10142-012-0268-1 [DOI: 10.1007/s10142-012-0268-1]
  38. Lee S, Jia Y, Jia M et al (2011) Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA. PLoS ONE 6:e26260. https://doi.org/10.1371/journal.pone.0026260 [DOI: 10.1371/journal.pone.0026260]
  39. Fu R, Wang C, Shen H et al (2020) Rice OsBRCA2 is required for DNA double-strand break repair in meiotic cells. Front Plant Sci 11:1800. https://doi.org/10.3389/fpls.2020.600820 [DOI: 10.3389/fpls.2020.600820]
  40. Wang D, Liu H, Zhai G et al (2016) OspTAC2 encodes a pentatricopeptide repeat protein and regulates rice chloroplast development. J Genet Genomics 43:601–608. https://doi.org/10.1016/j.jgg.2016.09.002 [DOI: 10.1016/j.jgg.2016.09.002]
  41. Wen BQ, Xing MQ, Zhang H et al (2011) Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1. J Integr Plant Biol 53:869–878. https://doi.org/10.1111/j.1744-7909.2011.01075.x [DOI: 10.1111/j.1744-7909.2011.01075.x]
  42. Zhang W, Tan L, Sun H et al (2019) Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Mol Plant 12:1075–1089. https://doi.org/10.1016/j.molp.2019.04.005 [DOI: 10.1016/j.molp.2019.04.005]
  43. Lucob-Agustin N, Kawai T, Takahashi-Nosaka M et al (2020) WEG1, which encodes a cell wall hydroxyproline-rich glycoprotein, is essential for parental root elongation controlling lateral root formation in rice. Physiol Plant 169:214–227. https://doi.org/10.1111/ppl.13063 [DOI: 10.1111/ppl.13063]
  44. Yu J, Xiong H, Zhu X et al (2017) OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol 15:28. https://doi.org/10.1186/s12915-017-0365-7 [DOI: 10.1186/s12915-017-0365-7]
  45. Chang S, Chen Y, Jia S et al (2020) Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches. PLOS Genet 16:e1009157. https://doi.org/10.1371/journal.pgen.1009157 [DOI: 10.1371/journal.pgen.1009157]
  46. Song S, Wang G, Hu Y et al (2018) OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. J Exp Bot 69:4283–4293. https://doi.org/10.1093/jxb/ery232 [DOI: 10.1093/jxb/ery232]
  47. Chang Z, Jin M, Yan W et al (2018) The ATP-binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice. Rice 11:58. https://doi.org/10.1186/s12284-018-0248-8 [DOI: 10.1186/s12284-018-0248-8]
  48. Li QF, Zhang GY, Dong ZW et al (2009) Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. Plant Physiol Biochem 47:351–358. https://doi.org/10.1016/j.plaphy.2009.02.001 [DOI: 10.1016/j.plaphy.2009.02.001]

Grants

  1. ECR/2016/001934/Science and Engineering Research Board

MeSH Term

Alleles
Gene Frequency
Genetic Variation
Genome-Wide Association Study
Genomics
Genotype
Haplotypes
India
Microsatellite Repeats
Oryza
Phylogeny
Plant Breeding
Polymorphism, Single Nucleotide
Stress, Physiological

Word Cloud

Created with Highcharts 10.0.0ricelandracesgeneticdiversitystudyhaplotypehighalleles0SSRanalysispopulationyieldconditionscultivatedpresentrevealedKeralamarkersPICvalueranged809currentnumberstudiesHaplotypesgenesbioticabioticstresstolerancegrowthdevelopmentSNPBACKGROUND:staplefoodhalfworld'senhancinggrainirrespectivevariableclimaticindispensableManytraditionallywelladaptedsevereenvironmentalplayimportantrolecropimprovementMETHODSANDRESULTS:levelamongunexploitedfarmersTwelvepolymorphicdetectedtotalseventy-sevenaverage6416perlocusPolymorphicInformationContent459differentiategenotypesRM242foundappropriatemarkerindicatedhighlydiversehighervaluesadequateShannoninformationindexUtilizinginformativefuturemolecularcharacterizationadvisablesetsgenomicregionswithinchromosomeinheritedtogetherhaplotype-basedbreedingpromisingstrategydesigningnext-generationvarietiesexplored270blocks775haplotypeschromosomesSNPsblocktwo28relatedyield-enhancingalsoelucidatedCONCLUSIONS:investigationwillopenwaygenome-wideassociationQTLidentificationmarker-assistedselectionunexploredcollectedmarker-basedhaplotypingassociatingacross93GeneticHaplotypeRice

Similar Articles

Cited By