Evolution-Based Protein Engineering for Antifungal Peptide Improvement.

Jing Gu, Noriyoshi Isozumi, Shouli Yuan, Ling Jin, Bin Gao, Shinya Ohki, Shunyi Zhu
Author Information
  1. Jing Gu: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
  2. Noriyoshi Isozumi: Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan.
  3. Shouli Yuan: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
  4. Ling Jin: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
  5. Bin Gao: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
  6. Shinya Ohki: Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan.
  7. Shunyi Zhu: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. ORCID

Abstract

Antimicrobial peptides (AMPs) have been considered as the alternatives to antibiotics because of their less susceptibility to microbial resistance. However, compared with conventional antibiotics they show relatively low activity and the consequent high cost and nonspecific cytotoxicity, hindering their clinical application. What's more, engineering of AMPs is a great challenge due to the inherent complexity in their sequence, structure, and function relationships. Here, we report an evolution-based strategy for improving the antifungal activity of a nematode-sourced defensin (Cremycin-5). This strategy utilizes a sequence-activity comparison between Cremycin-5 and its functionally diverged paralogs to identify sites associated with antifungal activity for screening of enhanceable activity-modulating sites for subsequent saturation mutagenesis. Using this strategy, we identified a site (Glu-15) whose mutations with nearly all other types of amino acids resulted in a universally enhanced activity against multiple fungal species, which is thereby defined as a Universally Enhanceable Activity-Modulating Site (UEAMS). Especially, Glu15Lys even exhibited >9-fold increased fungicidal potency against several clinical isolates of Candida albicans through inhibiting cytokinesis. This mutant showed high thermal and serum stability and quicker killing kinetics than clotrimazole without detectable hemolysis. Molecular dynamic simulations suggest that the mutations at the UEAMS likely limit the conformational flexibility of a distant functional residue via allostery, enabling a better peptide-fungus interaction. Further sequence, structural, and mutational analyses of the Cremycin-5 ortholog uncover an epistatic interaction between the UEAMS and another site that may constrain its evolution. Our work lights one new road to success of engineering AMP drug leads.

Keywords

References

  1. Science. 1992 Aug 21;257(5073):1064-73 [PMID: 1509257]
  2. Curr Opin Pharmacol. 2006 Oct;6(5):468-72 [PMID: 16890021]
  3. Trends Pharmacol Sci. 2010 Nov;31(11):509-15 [PMID: 20843562]
  4. Clin Microbiol Infect. 2019 Jul;25(7):792-798 [PMID: 30965100]
  5. J Biomol NMR. 1995 Nov;6(3):277-93 [PMID: 8520220]
  6. FASEB J. 2016 Jul;30(7):2602-14 [PMID: 27084888]
  7. Nat Biotechnol. 2006 Dec;24(12):1551-7 [PMID: 17160061]
  8. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  9. J Magn Reson. 2003 Jan;160(1):65-73 [PMID: 12565051]
  10. FASEB J. 2009 Apr;23(4):1230-45 [PMID: 19088182]
  11. J Biol Chem. 2009 Aug 28;284(35):23558-63 [PMID: 19574227]
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 1):021110 [PMID: 14524956]
  13. Nat Methods. 2007 Dec;4(12):991-4 [PMID: 18049465]
  14. Science. 2020 Sep 4;369(6508):1261-1265 [PMID: 32753553]
  15. Front Microbiol. 2012 Aug 08;3:286 [PMID: 23024638]
  16. Comb Chem High Throughput Screen. 2005 May;8(3):219-33 [PMID: 15892624]
  17. Protein Eng Des Sel. 2016 Dec;29(12):607-616 [PMID: 27672050]
  18. Drug Discov Today. 2017 Feb;22(2):234-248 [PMID: 27890668]
  19. Immunogenetics. 2019 Jan;71(1):61-69 [PMID: 30280251]
  20. Trends Immunol. 2007 Nov;28(11):482-90 [PMID: 17964218]
  21. Infect Immun. 1993 Jul;61(7):2978-84 [PMID: 8514403]
  22. Gene. 2000 Dec 30;261(1):43-52 [PMID: 11164036]
  23. PLoS One. 2013 Dec 30;8(12):e83502 [PMID: 24386217]
  24. Nat Biotechnol. 2013 May;31(5):379-82 [PMID: 23657384]
  25. Nature. 2006 Oct 19;443(7113):867-9 [PMID: 17051220]
  26. Nat Rev Mol Cell Biol. 2009 Oct;10(10):709-20 [PMID: 19756040]
  27. Biochemistry. 1991 Dec 24;30(51):11801-11 [PMID: 1751497]
  28. Crit Rev Microbiol. 2015 Jun;41(2):208-17 [PMID: 23962107]
  29. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):452-6 [PMID: 7831309]
  30. Science. 1991 Dec 6;254(5037):1521-3 [PMID: 1720574]
  31. Fungal Genet Biol. 2012 Jan;49(1):86-93 [PMID: 22079546]
  32. PLoS Comput Biol. 2008 Feb 29;4(2):e1000002 [PMID: 18463696]
  33. Biophys J. 2016 Jul 12;111(1):10-8 [PMID: 27410729]
  34. Nat Rev Microbiol. 2006 Jul;4(7):529-36 [PMID: 16778838]
  35. Ann N Y Acad Sci. 1999 May 18;870:400-3 [PMID: 10415508]
  36. Bioinformatics. 2008 Apr 1;24(7):908-15 [PMID: 18304936]
  37. J Biol Chem. 1994 Dec 30;269(52):33159-63 [PMID: 7806546]
  38. Antimicrob Agents Chemother. 2010 Oct;54(10):4235-45 [PMID: 20625155]
  39. Protein Sci. 2016 Jul;25(7):1260-72 [PMID: 26757214]
  40. Curr Biol. 2005 Jan 26;15(2):R52-3 [PMID: 15668155]
  41. Curr Opin Pharmacol. 2009 Oct;9(5):571-6 [PMID: 19734091]
  42. Hum Mutat. 2018 Dec;39(12):1814-1826 [PMID: 30117637]
  43. Nat Commun. 2014;5:3154 [PMID: 24434635]
  44. Nucleic Acids Res. 2019 Dec 2;47(21):e142 [PMID: 31584091]
  45. ACS Chem Biol. 2009 Jan 16;4(1):65-74 [PMID: 19055425]
  46. Nature. 2012 Oct 25;490(7421):535-8 [PMID: 23064225]
  47. J Immunol. 2001 Feb 15;166(4):2571-5 [PMID: 11160318]
  48. Macromol Rapid Commun. 2013 Jan 11;34(1):74-80 [PMID: 23112127]
  49. Insect Biochem Mol Biol. 1999 Nov;29(11):965-72 [PMID: 10560137]
  50. J Biol Chem. 2011 Feb 11;286(6):4429-42 [PMID: 21119198]
  51. Nat Rev Drug Discov. 2011 Dec 16;11(1):37-51 [PMID: 22173434]
  52. Biochemistry. 2015 Feb 24;54(7):1516-24 [PMID: 25629396]
  53. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  54. Science. 1989 Jun 2;244(4908):1081-5 [PMID: 2471267]
  55. Nat Methods. 2014 Aug;11(8):801-7 [PMID: 25075907]
  56. Adv Drug Deliv Rev. 2014 Nov 30;78:28-45 [PMID: 25453271]
  57. Nat Biotechnol. 2005 Aug;23(8):1008-12 [PMID: 16041366]
  58. Nat Methods. 2008 Nov;5(11):939-42 [PMID: 18931667]
  59. Dev Comp Immunol. 2010 Sep;34(9):953-8 [PMID: 20420852]
  60. Nature. 2012 Nov 1;491(7422):138-42 [PMID: 23041932]
  61. J Chem Inf Model. 2011 Oct 24;51(10):2778-86 [PMID: 21919503]
  62. Nat Rev Genet. 2006 May;7(5):337-48 [PMID: 16619049]
  63. Cell. 2020 May 14;181(4):894-904.e9 [PMID: 32275855]
  64. Annu Rev Entomol. 2006;51:1-24 [PMID: 16332201]
  65. Methods Mol Biol. 2019;1851:123-134 [PMID: 30298395]
  66. Biochem J. 2013 Feb 1;449(3):581-94 [PMID: 23301657]

MeSH Term

Antifungal Agents
Candida albicans
Microbial Sensitivity Tests
Peptides
Protein Engineering

Chemicals

Antifungal Agents
Peptides

Word Cloud

Created with Highcharts 10.0.0activityCremycin-5UEAMSstrategysiteAMPsantibioticshighclinicalengineeringsequenceantifungalsitesenhanceableactivity-modulatingmutationsuniversallyCandidaalbicansinteractionAntimicrobialpeptidesconsideredalternativeslesssusceptibilitymicrobialresistanceHowevercomparedconventionalshowrelativelylowconsequentcostnonspecificcytotoxicityhinderingapplicationgreatchallengedueinherentcomplexitystructurefunctionrelationshipsreportevolution-basedimprovingnematode-sourceddefensinutilizessequence-activitycomparisonfunctionallydivergedparalogsidentifyassociatedscreeningsubsequentsaturationmutagenesisUsingidentifiedGlu-15whosenearlytypesaminoacidsresultedenhancedmultiplefungalspeciestherebydefinedUniversallyEnhanceableActivity-ModulatingSiteEspeciallyGlu15Lysevenexhibited>9-foldincreasedfungicidalpotencyseveralisolatesinhibitingcytokinesismutantshowedthermalserumstabilityquickerkillingkineticsclotrimazolewithoutdetectablehemolysisMoleculardynamicsimulationssuggestlikelylimitconformationalflexibilitydistantfunctionalresidueviaallosteryenablingbetterpeptide-fungusstructuralmutationalanalysesorthologuncoverepistaticanothermayconstrainevolutionworklightsonenewroadsuccessAMPdrugleadsEvolution-BasedProteinEngineeringAntifungalPeptideImprovementantimicrobialpeptideepistasisparalog

Similar Articles

Cited By (7)