How Do Shipworms Eat Wood? Screening Shipworm Gill Symbiont Genomes for Lignin-Modifying Enzymes.

Stefanos Stravoravdis, J Reuben Shipway, Barry Goodell
Author Information
  1. Stefanos Stravoravdis: Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.
  2. J Reuben Shipway: Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.
  3. Barry Goodell: Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.

Abstract

Shipworms are ecologically and economically important mollusks that feed on woody plant material (lignocellulosic biomass) in marine environments. Digestion occurs in a specialized cecum, reported to be virtually sterile and lacking resident gut microbiota. Wood-degrading CAZymes are produced both endogenously and by gill endosymbiotic bacteria, with extracellular enzymes from the latter being transported to the gut. Previous research has predominantly focused on how these animals process the cellulose component of woody plant material, neglecting the breakdown of lignin - a tough, aromatic polymer which blocks access to the holocellulose components of wood. Enzymatic or non-enzymatic modification and depolymerization of lignin has been shown to be required in other wood-degrading biological systems as a precursor to cellulose deconstruction. We investigated the genomes of five shipworm gill bacterial symbionts obtained from the Joint Genome Institute Integrated Microbial Genomes and Microbiomes Expert Review for the production of lignin-modifying enzymes, or ligninases. The genomes were searched for putative ligninases using the Joint Genome Institute's Function Profile tool and blastp analyses. The resulting proteins were then modeled using SWISS-MODEL. Although each bacterial genome possessed at least four predicted ligninases, the percent identities and protein models were of low quality and were unreliable. Prior research demonstrates limited endogenous ability of shipworms to modify lignin at the chemical/molecular level. Similarly, our results reveal that shipworm bacterial gill-symbiont enzymes are unlikely to play a role in lignin modification during lignocellulose digestion in the shipworm gut. This suggests that our understanding of how these keystone organisms digest and process lignocellulose is incomplete, and further research into non-enzymatic and/or other unknown mechanisms for lignin modification is required.

Keywords

References

  1. Biotechnol Biofuels. 2018 Mar 7;11:59 [PMID: 29527236]
  2. Appl Environ Microbiol. 2020 Jan 7;86(2): [PMID: 31676477]
  3. Structure. 1999 Aug 15;7(8):953-65 [PMID: 10467151]
  4. Int J Mol Sci. 2020 Jan 31;21(3): [PMID: 32024019]
  5. ACS Chem Biol. 2015 Oct 16;10(10):2286-94 [PMID: 26198187]
  6. Nucleic Acids Res. 2021 Jan 8;49(D1):D751-D763 [PMID: 33119741]
  7. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):E295-304 [PMID: 23288898]
  8. Int J Biochem Mol Biol. 2010;1(1):36-50 [PMID: 21968746]
  9. J Am Chem Soc. 2011 Nov 16;133(45):18006-9 [PMID: 21671563]
  10. J Appl Microbiol. 2012 May;112(5):900-6 [PMID: 22380656]
  11. Front Plant Sci. 2013 May 21;4:118 [PMID: 23734153]
  12. J Bacteriol. 2000 Jul;182(13):3754-60 [PMID: 10850991]
  13. J Biotechnol. 2016 Oct 20;236:110-9 [PMID: 27544286]
  14. Biochemistry. 2013 Sep 24;52(38):6724-36 [PMID: 23977959]
  15. Appl Environ Microbiol. 1992 Apr;58(4):1266-70 [PMID: 16348694]
  16. PLoS One. 2013 Oct 11;8(10):e76151 [PMID: 24146831]
  17. Appl Microbiol Biotechnol. 2012 Apr;94(2):323-38 [PMID: 22391968]
  18. J Biol Chem. 2019 Jun 28;294(26):10211-10235 [PMID: 31092555]
  19. Proc Biol Sci. 2019 Jun 26;286(1905):20190434 [PMID: 31213180]
  20. J Mol Biol. 2012 Feb 17;416(2):271-86 [PMID: 22226839]
  21. Insect Biochem Mol Biol. 2010 Oct;40(10):723-32 [PMID: 20691784]
  22. Biotechnol Biofuels. 2009 Oct 15;2:25 [PMID: 19832970]
  23. Sci Rep. 2015 Feb 04;5:8245 [PMID: 25650125]
  24. Bioengineered. 2016 Apr;7(3):145-54 [PMID: 27295524]
  25. Heliyon. 2020 Feb 19;6(2):e03170 [PMID: 32095645]
  26. Biotechnol Biofuels. 2017 Jul 11;10:179 [PMID: 28702084]
  27. Front Bioeng Biotechnol. 2019 Sep 03;7:209 [PMID: 31552235]
  28. Int J Syst Evol Microbiol. 2021 Feb;71(2): [PMID: 33439117]
  29. J Biol Chem. 1991 May 15;266(14):8751-8 [PMID: 1851156]
  30. Electrophoresis. 2009 Jun;30 Suppl 1:S162-73 [PMID: 19517507]
  31. Nat Rev Microbiol. 2011 Oct 03;9(11):803-16 [PMID: 21963803]
  32. Biotechnol Biofuels. 2012 Mar 20;5(1):15 [PMID: 22429569]
  33. IUCrJ. 2014 Aug 22;1(Pt 5):338-48 [PMID: 25295175]
  34. PLoS One. 2016 May 12;11(5):e0155269 [PMID: 27171209]
  35. Front Microbiol. 2015 Apr 09;6:281 [PMID: 25914684]
  36. FEBS J. 2009 Jan;276(1):58-75 [PMID: 19016852]
  37. Acta Crystallogr D Biol Crystallogr. 2013 Jan;69(Pt 1):32-43 [PMID: 23275161]
  38. Biochem Biophys Res Commun. 1997 Nov 26;240(3):787-92 [PMID: 9398646]
  39. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):E5096-104 [PMID: 25385629]
  40. Science. 1926 May 21;63(1638):524 [PMID: 17739273]
  41. Fish Shellfish Immunol. 2010 Apr;28(4):719-26 [PMID: 20109560]
  42. J Struct Biol. 2015 Jun;190(3):304-13 [PMID: 25916753]
  43. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12932-7 [PMID: 18725643]
  44. J Biol Chem. 2013 Jun 21;288(25):18574-87 [PMID: 23653358]
  45. Ecol Lett. 2018 Mar;21(3):422-438 [PMID: 29314575]
  46. Nucleic Acids Res. 2021 Jan 8;49(D1):D723-D733 [PMID: 33152092]
  47. J Biol Chem. 2015 Sep 18;290(38):23447-63 [PMID: 26205819]
  48. ISME J. 2021 Feb;15(2):592-604 [PMID: 33077886]
  49. PLoS One. 2020 Dec 14;15(12):e0243984 [PMID: 33315957]
  50. PLoS One. 2012;7(9):e45309 [PMID: 23028923]
  51. J Biol Chem. 2018 Jun 8;293(23):9078-9089 [PMID: 29695503]
  52. Science. 1981 Aug 14;213(4509):761-3 [PMID: 17834583]
  53. FEMS Microbiol Rev. 2017 Nov 1;41(6):941-962 [PMID: 29088355]
  54. PLoS One. 2009 Jul 01;4(7):e6085 [PMID: 19568419]
  55. Bioinformatics. 2020 Mar 1;36(6):1765-1771 [PMID: 31697312]
  56. mBio. 2021 Jun 29;12(3):e0355120 [PMID: 34126770]
  57. Curr Opin Chem Biol. 2015 Dec;29:108-19 [PMID: 26583519]
  58. Nucleic Acids Res. 2017 Jan 4;45(D1):D313-D319 [PMID: 27899672]
  59. PLoS One. 2013 Sep 04;8(9):e73827 [PMID: 24023907]
  60. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  61. Environ Microbiol. 2011 Jan;13(1):96-107 [PMID: 21199251]
  62. Biochim Biophys Acta. 2015 Jan;1850(1):118-28 [PMID: 25459515]
  63. Ann Rev Mar Sci. 2020 Jan 3;12:469-497 [PMID: 31505131]
  64. J Ind Microbiol Biotechnol. 2017 Mar;44(3):329-338 [PMID: 28032229]
  65. J Basic Microbiol. 2009 Sep;49 Suppl 1:S98-102 [PMID: 19718680]
  66. J Mol Biol. 2017 May 5;429(9):1336-1351 [PMID: 28336405]
  67. Bioresour Technol. 2010 Oct;101(19):7592-7 [PMID: 20537891]
  68. Chem Rev. 2001 Nov;101(11):3397-413 [PMID: 11749405]
  69. Front Microbiol. 2020 Jun 24;11:1389 [PMID: 32670241]
  70. Nat Commun. 2018 Dec 3;9(1):5125 [PMID: 30510200]
  71. Environ Microbiol. 2011 Apr;13(4):1091-100 [PMID: 21261800]
  72. Int J Syst Evol Microbiol. 2020 Apr;70(4):2388-2394 [PMID: 32100688]
  73. Microb Pathog. 2017 Nov;112:63-69 [PMID: 28943150]
  74. Cell Mol Life Sci. 2011 Apr;68(8):1311-25 [PMID: 21365277]
  75. Front Plant Sci. 2020 Apr 24;11:479 [PMID: 32391038]
  76. PLoS One. 2018 Nov 14;13(11):e0200437 [PMID: 30427852]
  77. PeerJ. 2014 Sep 25;2:e591 [PMID: 25276505]
  78. Front Microbiol. 2015 Sep 04;6:916 [PMID: 26388858]

Word Cloud

Created with Highcharts 10.0.0ligningutgillenzymesresearchmodificationshipwormbacterialligninasesShipwormswoodyplantmaterialCAZymesprocesscellulosenon-enzymaticrequiredgenomesJointGenomeGenomesusinglignocelluloseecologicallyeconomicallyimportantmollusksfeedlignocellulosicbiomassmarineenvironmentsDigestionoccursspecializedcecumreportedvirtuallysterilelackingresidentmicrobiotaWood-degradingproducedendogenouslyendosymbioticbacteriaextracellularlattertransportedPreviouspredominantlyfocusedanimalscomponentneglectingbreakdown-tougharomaticpolymerblocksaccessholocellulosecomponentswoodEnzymaticdepolymerizationshownwood-degradingbiologicalsystemsprecursordeconstructioninvestigatedfivesymbiontsobtainedInstituteIntegratedMicrobialMicrobiomesExpertReviewproductionlignin-modifyingsearchedputativeInstitute'sFunctionProfiletoolblastpanalysesresultingproteinsmodeledSWISS-MODELAlthoughgenomepossessedleastfourpredictedpercentidentitiesproteinmodelslowqualityunreliablePriordemonstrateslimitedendogenousabilityshipwormsmodifychemical/molecularlevelSimilarlyresultsrevealgill-symbiontunlikelyplayroledigestionsuggestsunderstandingkeystoneorganismsdigestincompleteand/orunknownmechanismsEatWood?ScreeningShipwormGillSymbiontLignin-ModifyingEnzymesTeredinidaebiodegradationendosymbiontslaccaseligninaseperoxidasewood-borers

Similar Articles

Cited By