Statistical-Shape Prediction of Lower Limb Kinematics During Cycling, Squatting, Lunging, and Stepping-Are Bone Geometry Predictors Helpful?

Joris De Roeck, Kate Duquesne, Jan Van Houcke, Emmanuel A Audenaert
Author Information
  1. Joris De Roeck: Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
  2. Kate Duquesne: Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
  3. Jan Van Houcke: Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
  4. Emmanuel A Audenaert: Department of Human Structure and Repair, Ghent University, Ghent, Belgium.

Abstract

Statistical shape methods have proven to be useful tools in providing statistical predications of several clinical and biomechanical features as to analyze and describe the possible link with them. In the present study, we aimed to explore and quantify the relationship between biometric features derived from imaging data and model-derived kinematics. Fifty-seven healthy males were gathered under strict exclusion criteria to ensure a sample representative of normal physiological conditions. MRI-based bone geometry was established and subject-specific musculoskeletal simulations in the Anybody Modeling System enabled us to derive personalized kinematics. Kinematic and shape findings were parameterized using principal component analysis. Partial least squares regression and canonical correlation analysis were then performed with the goal of predicting motion and exploring the possible association, respectively, with the given bone geometry. The relationship of hip flexion, abduction, and rotation, knee flexion, and ankle flexion with a subset of biometric features (age, length, and weight) was also investigated. In the statistical kinematic models, mean accuracy errors ranged from 1.60° (race cycling) up to 3.10° (lunge). When imposing averaged kinematic waveforms, the reconstruction errors varied between 4.59° (step up) and 6.61° (lunge). A weak, yet clinical irrelevant, correlation between the modes describing bone geometry and kinematics was observed. Partial least square regression led to a minimal error reduction up to 0.42° compared to imposing gender-specific reference curves. The relationship between motion and the subject characteristics was even less pronounced with an error reduction up to 0.21°. The contribution of bone shape to model-derived joint kinematics appears to be relatively small and lack in clinical relevance.

Keywords

References

  1. Knee. 2018 Aug;25(4):514-530 [PMID: 29802075]
  2. J Biomech. 2021 Feb 12;116:110106 [PMID: 33429072]
  3. Med Eng Phys. 2018 Nov;61:95-99 [PMID: 30282587]
  4. Gait Posture. 2017 Oct;58:214-219 [PMID: 28806709]
  5. J Neuroeng Rehabil. 2005 Jul 29;2:22 [PMID: 16053523]
  6. Bone Rep. 2020 Jan 11;12:100243 [PMID: 32181268]
  7. Sci Rep. 2019 Jul 2;9(1):9510 [PMID: 31267006]
  8. J Biomech. 1999 Feb;32(2):129-34 [PMID: 10052917]
  9. J Orthop Res. 2015 Nov;33(11):1620-30 [PMID: 25991502]
  10. Knee Surg Sports Traumatol Arthrosc. 2012 Jul;20(7):1331-8 [PMID: 21909723]
  11. J Biomech Eng. 2018 Mar 1;140(3): [PMID: 29238821]
  12. Ann Biomed Eng. 2018 Feb;46(2):284-297 [PMID: 29159731]
  13. J Biomech. 2015 Dec 16;48(16):4198-205 [PMID: 26506255]
  14. J Orthop Res. 2020 Oct;38(10):2250-2261 [PMID: 32017242]
  15. J Biomech. 2017 Sep 6;62:77-86 [PMID: 28601242]
  16. Adv Exp Med Biol. 2018;1093:131-142 [PMID: 30306478]
  17. Gait Posture. 2020 Jul;80:374-382 [PMID: 32622207]
  18. Front Bioeng Biotechnol. 2019 Nov 01;7:302 [PMID: 31737620]
  19. Comput Methods Biomech Biomed Engin. 2020 Jan;23(1):23-32 [PMID: 31818133]
  20. Front Bioeng Biotechnol. 2020 Apr 17;8:253 [PMID: 32363179]
  21. J Orthop Res. 2013 Mar;31(3):441-7 [PMID: 23097251]
  22. Gait Posture. 2020 Mar;77:269-275 [PMID: 32092603]
  23. Med Eng Phys. 2019 Apr;66:47-55 [PMID: 30850334]
  24. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2020 Nov-Dec;2020:666-672 [PMID: 33123409]
  25. J Biomech. 2015 Mar 18;48(5):734-41 [PMID: 25627871]
  26. Gait Posture. 2004 Oct;20(2):196-203 [PMID: 15336291]
  27. Front Bioeng Biotechnol. 2020 Apr 02;8:233 [PMID: 32300586]
  28. Comput Methods Biomech Biomed Engin. 2019 May;22(6):644-657 [PMID: 30822149]
  29. Med Biol Eng Comput. 2015 Jul;53(7):655-67 [PMID: 25783762]
  30. Gait Posture. 2007 Jan;25(1):86-93 [PMID: 16567093]
  31. Gait Posture. 2016 May;46:11-7 [PMID: 27131170]
  32. Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):371-84 [PMID: 18949590]
  33. IEEE Trans Neural Syst Rehabil Eng. 2003 Mar;11(1):24-30 [PMID: 12797722]
  34. Gait Posture. 2009 Apr;29(3):398-402 [PMID: 19056271]
  35. J Gerontol A Biol Sci Med Sci. 2013 Jun;68(6):726-32 [PMID: 23112113]

Word Cloud

Created with Highcharts 10.0.0kinematicsboneshapegeometrystatisticalclinicalfeaturesrelationshipflexionpossiblebiometricmodel-derivedmusculoskeletalanalysisPartialleastregressioncorrelationmotionkinematicerrorslungeimposingerrorreduction0modelStatisticalmethodsprovenusefultoolsprovidingpredicationsseveralbiomechanicalanalyzedescribelinkpresentstudyaimedexplorequantifyderivedimagingdataFifty-sevenhealthymalesgatheredstrictexclusioncriteriaensuresamplerepresentativenormalphysiologicalconditionsMRI-basedestablishedsubject-specificsimulationsAnybodyModelingSystemenabledusderivepersonalizedKinematicfindingsparameterizedusingprincipalcomponentsquarescanonicalperformedgoalpredictingexploringassociationrespectivelygivenhipabductionrotationkneeanklesubsetagelengthweightalsoinvestigatedmodelsmeanaccuracyranged160°racecycling310°averagedwaveformsreconstructionvaried459°step661°weakyetirrelevantmodesdescribingobservedsquareledminimal42°comparedgender-specificreferencecurvessubjectcharacteristicsevenlesspronounced21°contributionjointappearsrelativelysmalllackrelevanceStatistical-ShapePredictionLowerLimbKinematicsCyclingSquattingLungingStepping-AreBoneGeometryPredictorsHelpful?SSM-basedlowerlimboptimizationmodeling

Similar Articles

Cited By