Magnetic resonance radiomics features and prognosticators in different molecular subtypes of pediatric Medulloblastoma.

Feng-Chi Chang, Tai-Tong Wong, Kuo-Sheng Wu, Chia-Feng Lu, Ting-Wei Weng, Muh-Lii Liang, Chih-Chun Wu, Wan Yuo Guo, Cheng-Yu Chen, Kevin Li-Chun Hsieh
Author Information
  1. Feng-Chi Chang: Department of Radiology, School of Medicine, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University, Taipei, Taiwan.
  2. Tai-Tong Wong: Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
  3. Kuo-Sheng Wu: Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
  4. Chia-Feng Lu: Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  5. Ting-Wei Weng: Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan.
  6. Muh-Lii Liang: Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan.
  7. Chih-Chun Wu: Department of Radiology, School of Medicine, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University, Taipei, Taiwan.
  8. Wan Yuo Guo: Department of Radiology, School of Medicine, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University, Taipei, Taiwan.
  9. Cheng-Yu Chen: Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan.
  10. Kevin Li-Chun Hsieh: Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan. ORCID

Abstract

PURPOSE: Medulloblastoma (MB) is a highly malignant pediatric brain tumor. In the latest classification, medulloblastoma is divided into four distinct groups: wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4. We analyzed the magnetic resonance imaging radiomics features to find the imaging surrogates of the 4 molecular subgroups of MB.
MATERIAL AND METHODS: Frozen tissue, imaging data, and clinical data of 38 patients with medulloblastoma were included from Taipei Medical University Hospital and Taipei Veterans General Hospital. Molecular clustering was performed based on the gene expression level of 22 subgroup-specific signature genes. A total 253 magnetic resonance imaging radiomic features were generated from each subject for comparison between different molecular subgroups.
RESULTS: Our cohort consisted of 7 (18.4%) patients with WNT medulloblastoma, 12 (31.6%) with SHH tumor, 8 (21.1%) with Group 3 tumor, and 11 (28.9%) with Group 4 tumor. 8 radiomics gray-level co-occurrence matrix texture (GLCM) features were significantly different between 4 molecular subgroups of MB. In addition, for tumors with higher values in a gray-level run length matrix feature-Short Run Low Gray-Level Emphasis, patients have shorter survival times than patients with low values of this feature (p = 0.04). The receiver operating characteristic analysis revealed optimal performance of the preliminary prediction model based on GLCM features for predicting WNT, Group 3, and Group 4 MB (area under the curve = 0.82, 0.72, and 0.78, respectively).
CONCLUSION: The preliminary result revealed that 8 contrast-enhanced T1-weighted imaging texture features were significantly different between 4 molecular subgroups of MB. Together with the prediction models, the radiomics features may provide suggestions for stratifying patients with MB into different risk groups.

References

  1. Neuroimage. 2017 Jan 15;145(Pt B):166-179 [PMID: 27989847]
  2. Cancer Cell. 2017 Jun 12;31(6):737-754.e6 [PMID: 28609654]
  3. Neurosurgery. 1993 Dec;33(6):1026-9; discussion 1029-30 [PMID: 8133987]
  4. Acta Neuropathol. 2012 Apr;123(4):601-14 [PMID: 22349907]
  5. Med Phys. 2015 Nov;42(11):6725-35 [PMID: 26520762]
  6. F1000Res. 2015 Dec 30;4:1521 [PMID: 26925227]
  7. Acta Neuropathol. 2014;127(6):931-3 [PMID: 24699697]
  8. IEEE Trans Pattern Anal Mach Intell. 1986 Jan;8(1):118-25 [PMID: 21869331]
  9. BMC Bioinformatics. 2017 Jan 3;18(1):9 [PMID: 28049413]
  10. AJNR Am J Neuroradiol. 2017 May;38(5):981-985 [PMID: 28341714]
  11. Acta Neuropathol. 2010 Sep;120(3):305-16 [PMID: 20652577]
  12. Lancet Oncol. 2016 Apr;17(4):484-495 [PMID: 26976201]
  13. Acta Neuropathol. 2012 Apr;123(4):615-26 [PMID: 22057785]
  14. Cerebellum. 2018 Feb;17(1):28-36 [PMID: 29178021]
  15. Radiology. 2016 Feb;278(2):563-77 [PMID: 26579733]
  16. Radiology. 2008 Oct;249(1):268-77 [PMID: 18796682]
  17. Nat Clin Pract Oncol. 2007 May;4(5):295-304 [PMID: 17464337]
  18. J Clin Oncol. 2011 Apr 10;29(11):1408-14 [PMID: 20823417]
  19. Stat Methods Med Res. 2019 Jan;28(1):289-308 [PMID: 28747095]
  20. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  21. AJNR Am J Neuroradiol. 2019 Jan;40(1):154-161 [PMID: 30523141]
  22. J Clin Oncol. 1999 Mar;17(3):832-45 [PMID: 10071274]
  23. Cancer Genomics Proteomics. 2018 Jan-Feb;15(1):41-51 [PMID: 29275361]
  24. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  25. Clin Radiol. 2012 Feb;67(2):157-64 [PMID: 21943720]
  26. Cancer Cell. 2014 Mar 17;25(3):393-405 [PMID: 24651015]
  27. BMC Bioinformatics. 2010 Jul 02;11:367 [PMID: 20598126]
  28. Stroke. 2015 Jan;46(1):98-101 [PMID: 25388415]
  29. Radiology. 2020 May;295(2):328-338 [PMID: 32154773]
  30. Eur J Radiol. 2013 Feb;82(2):342-8 [PMID: 23194641]
  31. Lancet Oncol. 2006 Oct;7(10):813-20 [PMID: 17012043]
  32. Magn Reson Imaging. 2012 Nov;30(9):1234-48 [PMID: 22898692]
  33. Acta Neuropathol. 2012 Apr;123(4):473-84 [PMID: 22358457]
  34. Acta Neuropathol. 2014 Feb;127(2):189-201 [PMID: 24264598]
  35. Acta Neuropathol. 2012 Apr;123(4):465-72 [PMID: 22134537]
  36. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  37. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5213-8 [PMID: 18362333]
  38. Nat Commun. 2014 Jun 03;5:4006 [PMID: 24892406]
  39. Cancers (Basel). 2020 Mar 11;12(3): [PMID: 32168907]
  40. J Clin Oncol. 2015 Aug 20;33(24):2646-54 [PMID: 26169613]
  41. Clin Cancer Res. 2018 Sep 15;24(18):4429-4436 [PMID: 29789422]
  42. Acta Neuropathol. 2016 Jun;131(6):803-20 [PMID: 27157931]
  43. Nature. 2010 Dec 23;468(7327):1095-9 [PMID: 21150899]
  44. AJNR Am J Neuroradiol. 2014 Jul;35(7):1263-9 [PMID: 24831600]
  45. Nature. 2012 Aug 2;488(7409):49-56 [PMID: 22832581]

MeSH Term

Adolescent
Child
Child, Preschool
Female
Humans
Infant
Male
Cerebellar Neoplasms
Magnetic Resonance Imaging
Medulloblastoma
Prognosis

Word Cloud

Created with Highcharts 10.0.0featuresMBGroup4imagingmolecularpatientsdifferenttumorradiomicssubgroups0medulloblastomaWNT3resonance8MedulloblastomapediatricSHHmagneticdataTaipeiHospitalbasedgray-levelmatrixtextureGLCMsignificantlyvalues=revealedpreliminarypredictionPURPOSE:highlymalignantbrainlatestclassificationdividedfourdistinctgroups:winglesssonichedgehoganalyzedfindsurrogatesMATERIALANDMETHODS:Frozentissueclinical38includedMedicalUniversityVeteransGeneralMolecularclusteringperformedgeneexpressionlevel22subgroup-specificsignaturegenestotal253radiomicgeneratedsubjectcomparisonRESULTS:cohortconsisted7184%12316%211%11289%co-occurrenceadditiontumorshigherrunlengthfeature-ShortRunLowGray-LevelEmphasisshortersurvivaltimeslowfeaturep04receiveroperatingcharacteristicanalysisoptimalperformancemodelpredictingareacurve827278respectivelyCONCLUSION:resultcontrast-enhancedT1-weightedTogethermodelsmayprovidesuggestionsstratifyingriskgroupsMagneticprognosticatorssubtypes

Similar Articles

Cited By