pyProGA-A PyMOL plugin for protein residue network analysis.

Vladimir Sladek, Yuta Yamamoto, Ryuhei Harada, Mitsuo Shoji, Yasuteru Shigeta, Vladimir Sladek
Author Information
  1. Vladimir Sladek: Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia. ORCID
  2. Yuta Yamamoto: Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Tokyo, Japan.
  3. Ryuhei Harada: Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
  4. Mitsuo Shoji: Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
  5. Yasuteru Shigeta: Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
  6. Vladimir Sladek: Institute of Construction and Architecture, Slovak Academy of Sciences, Bratislava, Slovakia.

Abstract

The field of protein residue network (PRN) research has brought several useful methods and techniques for structural analysis of proteins and protein complexes. Many of these are ripe and ready to be used by the proteomics community outside of the PRN specialists. In this paper we present software which collects an ensemble of (network) methods tailored towards the analysis of protein-protein interactions (PPI) and/or interactions of proteins with ligands of other type, e.g. nucleic acids, oligosaccharides etc. In parallel, we propose the use of the network differential analysis as a method to identify residues mediating key interactions between proteins. We use a model system, to show that in combination with other, already published methods, also included in pyProGA, it can be used to make such predictions. Such extended repertoire of methods allows to cross-check predictions with other methods as well, as we show here. In addition, the possibility to construct PRN models from various kinds of input is so far a unique asset of our code. One can use structural data as defined in PDB files and/or from data on residue pair interaction energies, either from force-field parameters or fragment molecular orbital (FMO) calculations. pyProGA is a free open-source software available from https://gitlab.com/Vlado_S/pyproga.

References

  1. Bioinformatics. 2017 Dec 15;33(24):3996-3998 [PMID: 29106449]
  2. PLoS One. 2013;8(3):e58134 [PMID: 23526967]
  3. Biochem Biophys Res Commun. 2018 May 5;499(2):239-245 [PMID: 29567478]
  4. Nucleic Acids Res. 2020 Jul 2;48(W1):W94-W103 [PMID: 32427333]
  5. Comput Struct Biotechnol J. 2013 Mar 01;5:e201302006 [PMID: 24688699]
  6. Proteins. 2018 Sep;86(9):924-934 [PMID: 29790602]
  7. PLoS Pathog. 2013 Mar;9(3):e1003224 [PMID: 23555243]
  8. Chem Rev. 2012 Jan 11;112(1):632-72 [PMID: 21866983]
  9. PLoS One. 2020 Jan 27;15(1):e0227598 [PMID: 31986158]
  10. Sci Rep. 2017 Jun 6;7(1):2838 [PMID: 28588190]
  11. Nucleic Acids Res. 2016 Jul 8;44(W1):W375-82 [PMID: 27151201]
  12. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  13. Science. 2006 Dec 22;314(5807):1882-3 [PMID: 17185587]
  14. Nucleic Acids Res. 2015 Jun 23;43(11):5340-51 [PMID: 25940624]
  15. Nat Chem Biol. 2016 Jan;12(1):29-34 [PMID: 26595462]
  16. Biophys J. 2004 Jan;86(1 Pt 1):85-91 [PMID: 14695252]
  17. Methods Mol Biol. 2020;2114:49-73 [PMID: 32016886]
  18. J Chem Inf Model. 2020 Mar 23;60(3):1559-1567 [PMID: 32090564]
  19. J Chem Theory Comput. 2014 Apr 8;10(4):1762-9 [PMID: 26580384]
  20. PLoS One. 2017 Mar 1;12(3):e0171920 [PMID: 28248977]
  21. Bioinformatics. 2019 Nov 1;35(22):4664-4670 [PMID: 31038692]
  22. Biophys Rev. 2020 Apr;12(2):317-322 [PMID: 32124240]
  23. J Mol Biol. 1999 Sep 17;292(2):441-64 [PMID: 10493887]
  24. PeerJ. 2018 Dec 7;6:e5998 [PMID: 30568854]
  25. J Chem Inf Model. 2019 Jul 22;59(7):3222-3228 [PMID: 31268315]
  26. Nucleic Acids Res. 2019 Jul 2;47(W1):W471-W476 [PMID: 31114881]
  27. Biophys J. 2010 Dec 1;99(11):3704-15 [PMID: 21112295]
  28. J Chem Inf Model. 2018 Sep 24;58(9):2024-2032 [PMID: 30107728]
  29. Proteins. 2004 Mar 1;54(4):727-37 [PMID: 14997568]
  30. J Chem Theory Comput. 2013 May 14;9(5):2504-18 [PMID: 26583738]
  31. Bioinformatics. 2005 Apr 15;21(8):1311-5 [PMID: 15659419]
  32. Phys Rev E. 2020 Nov;102(5-1):052304 [PMID: 33327131]
  33. Nucleic Acids Res. 2016 Jul 8;44(W1):W367-74 [PMID: 27198219]
  34. Biophys J. 2010 Mar 3;98(5):890-900 [PMID: 20197043]
  35. Annu Rev Phys Chem. 2008;59:233-59 [PMID: 18393676]
  36. J Comput Chem. 2009 Dec;30(16):2594-601 [PMID: 19408278]
  37. J Mol Biol. 2003 Dec 5;334(4):781-91 [PMID: 14636602]
  38. Bioinformatics. 2003 Nov 22;19(17):2308-10 [PMID: 14630660]
  39. J Phys Chem A. 2020 Dec 10;124(49):10346-10358 [PMID: 33179919]
  40. J Chem Theory Comput. 2018 Dec 11;14(12):6623-6631 [PMID: 30500196]
  41. Phys Chem Chem Phys. 2012 Jun 7;14(21):7562-77 [PMID: 22410762]
  42. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15711-6 [PMID: 17898174]
  43. Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4735-40 [PMID: 27071107]
  44. Acc Chem Res. 2019 Dec 17;52(12):3455-3464 [PMID: 31793290]
  45. J Chem Theory Comput. 2019 Oct 8;15(10):5404-5416 [PMID: 31461277]
  46. J Comput Chem. 2015 Aug 15;36(22):1709-18 [PMID: 26147235]
  47. J Phys Chem A. 2016 Apr 14;120(14):2218-31 [PMID: 26949816]
  48. Protein J. 2019 Oct;38(5):497-505 [PMID: 31317305]
  49. Bioinformatics. 2002 Jun;18(6):788-801 [PMID: 12075014]
  50. Chaos. 2020 Jun;30(6):061102 [PMID: 32611087]
  51. J Chem Inf Model. 2012 Jul 23;52(7):1865-74 [PMID: 22721491]
  52. Sci Rep. 2019 Nov 13;9(1):16727 [PMID: 31723178]
  53. J Phys Chem B. 2019 Jan 31;123(4):768-775 [PMID: 30608162]
  54. Chem Rev. 2013 Mar 13;113(3):1598-613 [PMID: 23186336]
  55. J Chem Theory Comput. 2012 Aug 14;8(8):2949-2961 [PMID: 23139645]
  56. J Mol Graph Model. 2020 Nov;100:107650 [PMID: 32707520]
  57. Methods Mol Biol. 2020;2114:187-205 [PMID: 32016895]
  58. J Chem Theory Comput. 2012 Apr 10;8(4):1176-1189 [PMID: 22715321]
  59. Nucleic Acids Res. 2018 Jul 2;46(W1):W554-W562 [PMID: 29800260]
  60. Phys Chem Chem Phys. 2014 Jun 14;16(22):10310-44 [PMID: 24740821]
  61. Brief Bioinform. 2020 May 21;21(3):815-835 [PMID: 30911759]
  62. J Comput Chem. 2007 Jan 15;28(1):222-37 [PMID: 17109433]
  63. J Comput Chem. 2006 Jun;27(8):976-85 [PMID: 16604514]
  64. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jun;65(6 Pt 1):061910 [PMID: 12188762]
  65. Phys Rev Lett. 2001 Nov 5;87(19):198701 [PMID: 11690461]
  66. Bioinformatics. 2004 Aug 4;20 Suppl 1:i63-8 [PMID: 15262782]
  67. J Chem Phys. 2013 Feb 21;138(7):074111 [PMID: 23445001]

MeSH Term

Amino Acids
Protein Interaction Maps
Proteins
Software

Chemicals

Amino Acids
Proteins

Word Cloud

Created with Highcharts 10.0.0methodsnetworkanalysisproteinresiduePRNproteinsinteractionsusestructuralusedsoftwareand/orshowpyProGAcanpredictionsdatafieldresearchbroughtseveralusefultechniquescomplexesManyripereadyproteomicscommunityoutsidespecialistspaperpresentcollectsensembletailoredtowardsprotein-proteinPPIligandstypeegnucleicacidsoligosaccharidesetcparallelproposedifferentialmethodidentifyresiduesmediatingkeymodelsystemcombinationalreadypublishedalsoincludedmakeextendedrepertoireallowscross-checkwelladditionpossibilityconstructmodelsvariouskindsinputfaruniqueassetcodeOnedefinedPDBfilespairinteractionenergieseitherforce-fieldparametersfragmentmolecularorbitalFMOcalculationsfreeopen-sourceavailablehttps://gitlabcom/Vlado_S/pyprogapyProGA-APyMOLplugin

Similar Articles

Cited By